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ABSTRACT

A theoretical study has been performed of the mechanism by which wide
band gap, crystalline, white oxide powders discolor when subjected to radia-
tion typical of interplanetary space. Members selected from this group of
solids, such as MgO and Al203, should offer real potential as useful pigments
in thermal control coatings for spacecraft. Formulation of a basis for
selection constitutes the real problem, and this can be provided by a basic
understanding of the kinetics of radiative coloration of white pigments in this
potentially attractive group. Such kinetics have been studied in terms of the
pertinent energy transfer mechanisms involved and then organized into a
photochemical model. While necessarily tentative, this accomplished model
is predictive of pigment reflectance attenuation induced in the proton-affected
range by combined solar (wind) proton and photon radiation. Such initial
predictive capability provides a necessary tool in arranging the proposed
experimental program. The ultimate objective of such experimentation,
controlled by iterative exchange of results with a continuously improved
photochemical model, is the development of a superior pigment for spacecraft
thermal control coatings.
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1.0 INTRODUCTION

The work reported herein constitutes a detailed study of the mechanism
by which a certain class of white powder compounds (of interest as pigments
for spacecraft thermal control coatings) discolor upon irradiation with low
energy protons and solar spectral emission. These radiation sources were
selected as representative of the continuous flux in interplanetary space.

The study was restricted to wide band gap dielectric or insulator solids.
This was done because (a) they appear more promising and because (b) one
thus avoids the complexity introduced by necessary consideration of photo-
decomposition kinetics (at room temperatures) when dealing with powders
such as ZnO and TiO2.

As reviewed herein, this theoretical effort is initiated by a study of
defect generation in crystal lattices by low energy (1-3 keV) protons. Follow-
ing the study of proton collision theory, a study of the probability for anneal-
ing processes to occur which would oppose proton generation of defects is
undertaken. Annealing resulting from recombination of defect species by
either (a) self-diffusion or (b) a second order, proton-induced process is
investigated.

These defect generation and annealing kinetics are then integrated into
a representative photochemical model. Some simplification of this model is
made upon consideration in terms of MgO., Solutions of the model on this
basis are presented.

Implications of the model in terms of material selection and experi-
mental verification are also reviewed.






2.0 DEVELOPMENT OF RADIATIVE COLORATION MODEL

The environment to which this pigment coloration model is to be related
is that existing in interplanetary space. Major features of the pertinent
radiation are reviewed in Appendix A. The basic hazard is the solar wind
consisting of a neutralized proton (p+) flux of ~2.5 x 108 pT/cm2-sec with an
energy spectrum extending over limits of approximately 0.75 to 3.0 keV,

The electron component is of the order of 1 eV, Additionally, one must also
consider the UV component of the solar emission spectrum ( 0.2 to 0.4p
wavelength).

Preliminary study of collision theory indicated that the keV range pro-
tons would likely charge equilibrate close to point of entry in a target to form,
predominantly, the neutral species H°. Arguments relating to the H' +e!'= Ho
charge exchange process have been presented in Appendix B. As presently
understood, low energy proton collision theory does not differentiate in terms
of radiation effects induced by the two species. Despite this undefined
dependence, some understanding of the charge state of the projectile may
become important to the photochemical model which ultimately controls the
coloration process.,

Study of low energy proton collision theory reveals that two basic energy
transfer mechanisms control the proton — target interaction. In the area of
interest, energy transfer as a result of inelastic collisions with target ions
appears to be the dominant process by which the proton loses energy. A sec-
ond process, in which energy transfer results from elastic collisions (i.e.,
nuclear stopping), appears to be more important in determining color center
kinetics in high purity, dielectric oxides. The first process results in lattice
ionization and the generation of charge carriers, e.g. electron (e') - hole (h*)
pairs. The second process results in lattice displacement with attendant
generation of lattice vacancies, e.g. by creation of vacancy-interstitial pairs
(Frenkel defects). These latter represent potential trapping sites which when
populated form color centers. This pertinent collision theory is reviewed in
detail, without consideration of channeling effects, in Appendix C.

Consideration of the displacement process on an ionic basis indicates a
potential for annealing. This may be proton-induced and result from recom-
bination of opposite defect species generated by separate, random proton
collisions, Such annealing represents a second order process. An example,
in the case of a Frenkel pair, would consist of the simultaneous recombination
of the vacancy and the interstitial created by a given proton collision with their
opposite species, respective by, generated by prior uncorrelated events.
Conventional self-annealing involves thermal motion of a single induced vacancy
to within a capture radius of an interstitial. The latter process may be first or
second order kinetics. In both cases, the energy barrier opposing migration
can effectively determine the saturation density of these induced defect trapping
sites. In order to demonstrate the source of this important parameter (i.e. in
terms of material considerations), Appendix D is included. While generally
applicable, specifically it is formulated for a case of interest, namely the
evaluation of the energy barrier for migration of a cation vacancy in an
otherwise perfect, face centered cubic crystal lattice.



Indications are that proton-induced displacement and ionization effects
are dominant in that portion of a layer of pigment particles traversed by the
proton. A study of the scattering of near-UV photons by typical pigment
particles (see Appendix E) reveals that they penetrate this layer to a distance
of the order of 100#0(106A'). This may be compared with a proton penetration
of the order of 100A. The radiation effects associated with 3.2 to ~6.5 eV
solar UV photons incident on dielectric particles are likely to involve
exciton generation, subsequent decomposition to free carriers, and trapping.
Even though the density of such UV-induced effects is likely small, compared
to proton-induced effects, the projected range affected is about four orders of
magnitude greater. Consequently they warrant consideration in terms of -
their contribution to optical changes affecting solar absorption.

2.1 Proton Ionization Effects in the Lattice

Equations developed in Appendix C permit one to compute the partition
of energy, transferred from a moving proton to a crystal lattice, between
ionization and nuclear processes. Figure 1 illustrates the result of such a
computation for a case of interest, a 3000 eV proton incident on MgO. The
computation is made without regard to channeling effects. It will be observed
that at the end of the particle track, ~800A, about 83% of its energy resulted
in ionization effects. For a material such as MgO (band gap energy
Eg ~ 10 eV), the ionization yield of such a collision is approximately 125
(=72500/(2 x 10)) e' - h* pairs.
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Figure 1. Energy transfer from a 3000 eV proton
as it is stopped in a MgO target.



Note also that while the energy transfer gradient (slope of curve) for
ionization drops off continuously along the random path R (track) the energy
transfer gradient as a result of nuclear stopping is essentially constant.
This results from the assumption that the nuclear stopping cross section Sg
is independent of energy over the limits of interest (say 150-3000 eV).

2.2 Proton Displacement Effects in the Lattice

The displacement yields (number of displacements per proton) as a
function of proton energy and target material is computed from equations
(C29) and (C30) presented in Appendix C. A comparison of various targets
in Figure 2 demonstrates that the cation displacement yield increases
with decreasing cation mass, as would be anticipated. Also expected is the
non-linear increase in yield with increase in energy for a given material.
This latter indicates that, with increasing proton energy, nuclear stopping
becomes less significant.

In a real crystalline compound, e.g. AjBm, there is a strong likeli-
hood of the proton colliding alternately with cation and anion members of the
lattice. In those cases where the anion mass is less than the cation mass,
e.g. MgO, anion displacement can continue even when the protons' energy
has dropped to a level below which cation displacement cannot occur. Below
such an energy level, energy transfer to the cation can only induce ''thermal"
effects. There is a still lower energy limit below which the proton cannot
effect anion displacement. DBelow this energy level, the residual proton
energy is dissipated to both cation and anion as a ''thermal'’ effect. A com-
parison of cation (npa) and anion (np) displacement yields in MgO is presented
in Figure 3 as a function of proton energy. As explained above, ng > np where
mass B < mass A,
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Figure 2. Cation displacement yield in
oxides of interest as a function
of initial proton energy.
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Figure 3. Comparison of cation and anion
displacement yields in MgO as a
function of initial proton energy.

In terms of a coloration model one needs to know whether the color
center rate equations must be expressed as being dependent on projected
-range. For this reason the cation displacement yield gradients generated by
a 3000 eV proton in various oxides were computed as shown in Figure 4.
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Figure 4. Cation displacement yield
gradients generated by a
3000 eV proton in oxides of
interest.



Even though presented on the basis of total path R rather than projected
range R, there is a reasonable indication that the cation displacement yield
is fairly uniform over the projected range. Thus displacement yields need
not be considered range- dependent in the color center kinetics. Note from
Appendix C (Table C1) that Rp.is an order of one-fourth R for a proton of
initial energy = 3000 eV.

2.3 Annealing of Lattice Displacements

Earlier consideration of low energy proton collision kinetics in ionic
lattices revealed that a significant portion of the protons' energy is trans-
ferred to a crystal lattice via an elastic collision mechanism, This results in
displacement of lattice ions from normal sites to metastable interstitial posi-
tions with a yield of the order of one displacement per proton. A given
displaced ion thus comes to rest at an interstitial position a radial distance r
away from its normal site. This pair, consisting of an interstitial (say M )
and its parent vacancy (say V! ), is termed a Frenkel pair.

Charged particle collision studies further indicated (without considera-
tion of channeling) that the projected range over which dissipation of the pro-
tons' energy is complete is an order of 10-6 cm for materials of interest.
This energy loss is also indicated to be reasonably uniform over the projected
ranges. These facts, when considered together in terms of a typical space
flux of 2.5 x 108 solar wind protons/cmé-sec, indicate the generation in the
surface of ~1021 Frenkeldefectsper cm3 per year without consideration of
annealing processes. Such defect levels would represent material decom -
position. Further, this order of defect density makes insignificant the
contributions to intrinsic defect levels (e. g., the density of isolated cation
vacancies) introduced into the pt range by virtue of any reasonable thermal
or mechanical history or the presence of selected, substitutional impurities.

Thus it is imperative to investigate the probability for annealing (both
self- and proton-induced) of these proton-induced Frenkel pairs, for example
v - MY

M

2.3.1 Proton-Induced (Second Order) Annealing of Frenkel Defects
2.3.1.1 Second Order Annealing Model

Based on the concept of forward scattering in an ionic lattice, the pair
density in a crystal MX containing a stable vacancy (Vn)a - interstititial (M )
pair generated by pT collision event a will double if, after a subsequent,
unrelated, random pt event s resulting in a second pair (VM)S - (Mj)g, the
separations between (Viyla - (Mi)g, ( gM)s - (Mi)g, and (Viy)g - (M )a in all
cases exceeds the radius of certain recombination r*. This concept is
illustrated as follows: '



The above stable defect system (rq4 > r*) experiences a net gain of one pair
after event ps if Ty, rp, T3 > %,

The probability for initial pair separation (i.e., upon impact) controls
ri and rq4 and may be estlrnated from Holmes!' d1sp1acement theory.l In terms of
a (VM)a - (Mj), separation >r*, this probability is labeled p(r >r%*) or p for
shorthand.

The probablhty for recombination between allowed, random pair mem-
bers, e.g., (VM)a - (Mj)g, may be expressed as the ratlo of the volume
associated with certain recombination to that existing '"average'' volume
‘associated with a given defect. This probability may be labeled P, It
will be observed that once separated by r] >r* (i.e., prevented from self-
recombination), each member of the new pair above, (VM)s and (Mj)g, is
independently able to recombine with an existing opposite species. This gives
rise to P(V, -~ M,) and P(Mg «— V}), where a and b represent any random
existing species and the arrows denote a vacancy jumping toward an interstitial
assumed to be stationary. By definition then:

.3
_ - _ (4/3)mr=
P(Vg — Ma) = P(MS Vb) P= N (1)
where:
N = pair density ~ defect density, no./cm
1/N = crystal vol. (cm3) associated with each defect
(4/3)1rr*3 = max. vol. associated with certain recombination

It is evident that recombination of a single pair results in no net defect density
change. Simultaneous recombination (with probability P2) of both members of a
single defect event is required for annealing.



Based on the above considerations, a rate expression for N is as follows:

dN _ : (2)
& = Pe/Ry) - [elnd/ R)|(P)(P)
where:
n' = n¢/R_ = Frenkel pair generation rate, no. /cm3 -sec

(neglecting secondary effects)

n = cation or anion displacement yield npor np, displacements/
proton

¢ = proton flux, pt/cm?-sec
Rp = projected range of proton, cm

The factor p insures that only displacements greater than r* are counted.

Substituting from (1) into (2) and rearranging yields:

|

1 - [(4/3) nr*?’N]Z

I - p(n¢/Rp)

on'(1 - CN?) (3)

where:

C = [(4/3) 1Tr*3]2

The resulting rate expression, equation (3), is observed to be of second
order. Rearrangement facilitates its solution as follows:

(1/C) 4N o '
N(t) ~t
l/C/ % = pn'/ dt
N(o) 1/C-N A
N(t)
11 -1 /N
C C_i/z tanh ( C_1/2> = pn’t
N(o)



-1 1/2 -1 1/2 1/2
.tanh C N(t) - tanh C N(o)] = (pn'C )t =t/r

1/2 -1 1/2
C N(t) = tanh |t/v + tanh [C N(o)}

1/2 tanh (t/T) + CI/ZN(O)
1 +tanh (t/7) C~' “N(o)
-1/2

C

N(t) _ 1}:;nhj§/"’ ) + N(o)
1+cC N(o) tanh (t/7) (4)

where:
T= time constant = (pn'Cl/Z)-l

Note that the expression for tanh (t/T) is:

eXp (t/T) -~ exp (-t/T) (5)

tanh (t/7) = exp (t/T) T exp (~t/T)

Thus at t = o (approximated by t > Tg from equation (5) we see that tanh (t/T)
= 1. 'Therefore from (4), N(=) = c-le Similarly the pair density

N(T) may be obtained by evaluating tanh (t/7T) at t = T and substituting in (4)

as follows:

_e-1/e _ 2,718 - 0,368 _
[tan (t/T)]tﬂ‘ e T 1/ ~ 2.718 T 0.368 _ 076 (6)
0.76 ™12 4 N(o)
JLN(T) =
1+0.76 c2 No)
(7)
~0.76 ¢ 2 20,76 N(w)

The pair density at a time equal the time constant has thus attained 76 percent
of its steady state value N(«) when N(o) values are relatively small.
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Examination of equations (3) or (4) reveals an increasing'rate of
approach to N(w«) with increasing proton flux $ of a given energy level. They
further indicate that the time-dependent Frenkel pair density created by low
energy proton incidence may be expressed as a second order rate equation in
terms of a pair generation rate n' (= nci)/Rp in primary pairs/cm-sec) and
certain probabilities for initial pair separation and for recombination between
allowed random pair members.

2.3.1.2 Probability For Intitial Pair Separation

The calculation of the probability that a given proton (either monoener-
getic or with a defined probability of energy distribution) upon collision with
a lattice cation will knock the cation (primary knock-on ion) a distance >r¥
away from the parent lattice site is based on collision theory presented in
Appendix C, It proceeds in two steps:

(a) First calculate the ratio Q(T < T;) of the number of knock-on ions
receiving energy < Ty from a proton of energy Ey, n(T < T, E;),
to the total number knock-ons which a proton of energy Ej can
generate, n(E ). This ratio represents the probability that a
knock-on will possess an energy < T; when struck by a proton of
energy Ej.

(b) Holmes presents a general correlation of the average vector range
(in this case equivalent to Mj - VM separation) of a knock-on ion
moving in its own lattice with initial energy T}'. (Note: His sym-
bol for Tj' is E. Further T{' = T{ - Ep; in other words the initial
energy of the knock-on is equal to the upper limit of transferred
energy T] less the energy required to effect ion displacement Ep,
=25 eV.)

Thus the probability that a knock-on will receive energy < T; from a proton of
energy E; can be equated through Holmes' work to a corresponding probability
that the separation between the knock-on interstitial (M;) and its parent
vacancy (V) will be some value <rj.

The probability that a primary knock-on will be transferred an energy
<T, by a proton of initial energy E; may be expressed as follows:

n(T < T,, E

T<T., E,) = 1 Fy) 8

This expression may be modified to include the more general case when the
proton has a probable distribution in initial energy ¥(E) as follows:

fd\I/(E) * (T < T))

fd\I/(E) “n

Q[T <T,, q/(E)} (9)
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Using relationships similar to those developed in Appendix C, solutions
for both the case of a knock-on generated by monoenergetic proton collision
and the case where proton energies are distributed have been obtained. These
solutions are presented for MgO in Figure 5. Within the context of the pre-
cision of this effort, it is noted that the probability Q is not greatly sensitive
to the method of specification of initial proton energy within the limited solar
wind energy range. In Figure 6 probability values for additional oxide com-~

~pounds are presented, all based on the same, arbitrary, Gaussian, proton
energy distribution (peak energy = 1.75 keV, limits of 0.75 to 3 keV) indi-
cated in Figure 5.

The calculated probabilities 2 have been converted into calculated
probabilities for vacancy-interstitial separation, P(r < r]'), by means of
Holmes' correlation and presented in Figure 7. Note that the Holmes'
correlation relates to "'equal mass cases,' i.e., those cases where a single
species of knock-on atom moves in its own lattice. The conversion of
probabilities has been made with this tacit assumption refined by the further
assumption that the metal ion moves in its own lattice, modified so as to
possess the ionic density of an actual designated compound. For given values of
r; (e.g. r¥), the probability that the vacancy-interstititial separation is
greater than r¥ is given by: p(r >r¥*) =1 ~ p(r < r¥),

1.0 Mgo I l —_—

MONOENERGETIC (£, = 0.75¢V) |~ | —]
-~

e
©

/ _ " MONOENERGETIC (F = 3 keV)
/ / i
0.6 TAA Y

/7 GAUSSIAN ENERGY DISTRIBUTION®
17
0.4 /)

/7 *PEAK ENERGY = 1,75 keV.
I ENERGY LIMITS: 0,75 TO 3.5 keV

0.2 1

PROBABILITY THAT Mg>" KNOCK - ON ION WILL
RECEIVE ENERGY LESS THAN T,, 2(T<T))

0 20 40 60 80 100 120

AVERAGE ENERGY TRANSFERRED TO Mgz+ KNOCK - ON, T| IN eV
Figure 5. Calculated probability that a Mg2*
knock-on in an MgO lattice will
receive an energy <T] when struck
by a proton of specified energy.
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Figure 6. Calculated probability that a metal

knock-on ion (native to various lat-
tices) will receive an energy <Tj
when struck by a proton from a
Gaussian distribution in energies.
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2.3.2 Self-Annealing of Frenkel Defects

The maximum volume as soc1ated with certain recombination between
(VM) and (M’ )a resulting from pt collision a is 4/3 mr*3, Thus r* is
termed that rad1al separat1on between (VM)a “and (M{" ), below which self-
annealing is certain in a time of interest (e.g., a year) At separations >r¥*,
second order annealing is possible and is accounted for in equation (4).

Self-annealing is thus controlled by the value determined for r*., This
r* determination has proven to be a difficult task even on the basis of certain
simplifying assumptions. These assumptions, while limiting the rigorous-
ness of the solution, certainly do not appear restrictive in terms of useful-
ness of the solution to the problem at hand. For example, it 1s assumed that
in a metal oxide (1) the metal ion interstitial (M )-vacancy (VM) pair is
preferent1ally generated and further that (2) VM M1 self-recombination
occurs by V{j migration through the lattice dlrectly toward an essentially
staticnary Mj’'. At some small separation r = r¥, it is thought that the energy
barrier to cation (VM) m1grat1on (character1st1c of large separation) will be
sufficiently overcome by V - Mj' interactions in the lattice so that thermal
motion (at room temperature) w111 offer high probability that a jump toward
M:" can occur within a year. Any required, subsequent lattice jumps to effect
final recombination would then be expected to occur in times small compared
tc a year. '

2.3.2.1 Energy Barrier for Cation Vacancy Migration in an Otherwise
Perfect Lattice

The first step in this task involves the theoretical calculation of the
energybarrier for vacancy migration AU, (cation) in an otherwise perfect lat-
tice. This basis approximates the real case when r is very large. Compu-
tation of AU, requires evaluation of the lattice potential (or lattice energy)
along certain paths between normal lattice positions. Although imposing
some limitation on ultimate usefulness, the complexity of the calculation dic-
tated selection of one of the simplest lattices as a basis for initial calcula-~
tions, namely the face centered cubic lattice. In this lattice, separations
between adjacent cation and anion is termed r, and the pertinent cation
migration path is a diagonal one from a 0,0,0 to a 1, 1, 0 position and passing
through the saddle-point approximated by position 1/2,1/2,0. Schematically,
this is shown in Figure D2 (Appendix D). Cation movement is indicated as
occurring from normal lattice site b (0,0, 0) to vacancy a (1, 1,0), with the
cation shown in the saddle-point position (1/2,1/2,0), Cation vacancy migra-
tion, of course, occurs in the opposite direction. '

14



Note that migration of the lattice cation is based on an otherwise perfect
lattice containing a cation vacancy. As the lattice cation moves to the saddle-
point configuration, critical to the AU} value, three defect states result,
namely cation vacancies v, and v, and the lattice cation at the saddle-point,
There are ten nearest neighbor (n.n.) anions to these three defects. The two
n.n. anions to the saddle cation undergo the critical displacement\/zgro upon
lattice relaxation about the saddle-point configuration. The remaining eight
anions are located n.n. to the two vacancies and undergo lesser displacement
Nro, upon relaxation. The net energy release (U, -U,), primarly resulting
from reduced non-Coulombic ionic interactions, which accompanies this
relaxation to displaced positions by all lattice ions is dominated by the dis-
placement of these ten nearest neighbor anions.

By means of solutions given in Appendix D one may demonstrate the
variation in relaxation energy (U, -U,) in terms of the dimensionless dis-
placement parameters £ andn. Such variation is presented in Figure 8 for
the case of MgO, a face centered cubic lattice. Note that this relaxation
energy represents the sum of Coulombic and non-Coulombic interaction ener-
gies. Since " is the least sensitive of the two parameters, interaction ener-
gies are computed for a selected M value while the value of § is varied. The
maximum decrease in energy (U -Up) locates the equilibrium displacement
positions. It happens that the value indicated (-64.396 eV) results from a
process of successive trial-and-error selection of 7 values and calculation of
corresponding gvalues until a maximum decrease, indicative of equilibrium,

was obtained.

The value of AUy for a vacancy in an otherwise perfect lattice equals
the relaxed saddle-point energy less the work done in creating this single
vacancy. An energy level schematic demonstrates this relationship as

follows:

UNRELAXED SADDLE-POINT ENERGY

1

g Y
2 *
w Uy-U,; | RELAXATION ENERGY, SADDLE-POINT CONFIGURATION
2, 1
5 Y2———— RELAXED SADDLE-POINT ENERGY

AU

r
Yq + ENERGY OF RELAXED LATTICE WITH SINGLE CATION VACANCY
‘ ENERGY REFERENCE ( PERFECT LATTICE )
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Figure 8. Variation in saddle-point relaxation energy in MgO
as a function of displacement parameters £ andn

Thus, in a lattice with energy Uy, as the cation migrates from position 0,0, 0
to 1/2,1/2,0 the lattice energy would rise sharply were it not for relaxation
of the nearest neighbor ions, especially the two adjacent to the saddle ion.
Upon relaxation, energy U,'-U, is released and the lattice energy drops sig-
nificantly to the value indicated at the relaxed saddle-point. The energy bar-
rier for cation (or cation vacancy) migration AU, is thus observed to be the
difference in lattice energy levels existing in the relaxed saddle-point con-
figuration Uy and in the relaxed single cation vacancy configuration Uj.
Indicative of the importance of this relaxation energy is the fact that typically
it is an order of magnitude greater than AU, '
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The results of a calculation of AUy for the case of MgO are presented in
Table 1, both with and without consideration of Van der Waal interactions.
These values were computed using procedures described in Appendix D.

TABLE 1. EFFECT OF VAN DER WAAL INTERACTIONS ON
CALCULATED AUr (CATION) VALUE FOR MgO

MgO

Without With
Van der Waal Van der Waal

Polarization displacement of ions nearest
neighbor to a:

Cation vacancy, Ve 0.035 0.035 (est)
Saddle-Point Configuration, £r, 0.11 0.11 (est)
nr 0.011 0.011 (est)
Unrelaxed saddle-point energy UZ" eV 90.070 90. 328
Saddle-point relaxation energy -64. 396 -64,396

change Up'-U,, eV
- o (. :
U2 [ U2 (U2 UZ) :I in eV 25.674 25.‘932

Relaxed lattice with single cation
vacancy (Ul)’ eV 22.211 22.583

AUr(cation) = U2 - U1 in eV 3,463 3. 349

The effect of Van der Waal's contributions to the lattice energy at vari-
ous defect configurations is seen to be small, thus resulting in a small net
effect on AUr (cation).  The Van der Waal energy interaction terms are
Coulombic and are generally expressed as follows:

UaB=""¢% - — 8 (10)
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Usp™""% -~ 8 (11)
T r

u . Can Daa (12

AATTT 6 T T8 )

where, for the case of MgO, consider A to represent the Mg2+ and B to repre-~
sent the O2-, Constants CAB, CAA, and Cgp are applicable to interactions
between Mg2t - O2-, Mg2*t - Mg2%, and O%- - O2- respectively. The D con-
stants are similarly designated. As might be expected from the fact that

Van der Waal forces are attractive between the nuclear charge of one ion and
the valence charge of a neighbor, the largest values of the constants are Cpp
and Dp a, representing the interaction between both of the heavier species
Mg2+. Also, it is obvious that these interactions (varying as 1/r® and 1/ £8)
drop off very rapidly with separation'r between two given ions.

Referring to the cation saddle-point configuration shown in Figure D2 in
Appendix D, it is seen that only the 10-nearest neighbor anions (say O2- tndergo
major displacement upon relaxation. Since it is so sensitive to the separa-
tion r, the contribution of the Van der Waal terms is thus minimized by the
fazct that the interactions at closest separation are largely between Mg T and
(OL AN

Please note that for the case of an anion saddle-point configuration,.the n.n. .
displaced ions would be cations (say Mgzl). In such a case, the Mg2+ - Mg2+
interaction terms are dominant and have been_calculated to be more than an
order of magnitude greater than the Mg2+ - O2%- or O2- - 02~ interactions.
Thus Van der Waal interactions would, in this case, have to be considered
integrally with the other Coulombic and non-Coulombic interactions in order
to calculate lattice relaxation about the saddle-point by the procedure of
maximizing the decrease in relaxation energy.

Since Van der Waal contributions are fortuitously small in the case of
the cation vacancy migration, these contributions were calculated independently
and added to the values in the left hand column of Table 1 in order to obtain
those given in the right hand column.: Similar reasoning indicates that dis-
placement values may be estimated as unchanged by Van der Waal interactions
for the case of cation vacancy migration.

The above computation discloses two major points as follows:
a. The calculated value of AU; (cation) = 3.3 eV is close to the

experimentally obtained value 2 of 3.4 eV in the fegion of
intrinsic self-diffusion (i.e. for MgO).
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b. Lattice relaxation displacements are much smaller than antici-
pated based on comments by Fletcher and Brown, 3 being only
0.11 r, in the case of the two anions which are nearest neighbors
to the saddle-point ion,

2.3.2.2 Energy Barrier for Cation Migration in Close Proximity
to an Interstitial Ion

A second step is involved in the study of self-annealing of Frenkel pairs.
This consists of evaluating AU, (cation) as the cation moves in close proximity
to the stationary interstitial. Summation of explicit and continuum interaction
energy terms for this lattice defect configuration has proven too complex to
consider within the scope of this work, As an alternative procedure, VM is
considered to jump directly toward the oppositely charged M against AU,
(even when r is small) but assisted by the energy of 1nteract10n between Vl(/l
and M;', qy * qM/(Kr) = q2/(xr). Justification for such a procedure stems
from the fact that, since lattice distortion was found to be much smaller than
anticipated, it seems reasonable that one 1s thus permitted to uncouple the two
members of the approaching defect pair (VM M;") in terms of their overlap
repulsion interaction. Their interaction may therefore be treated on the basis
of a Coulombic interaction only between two charges, qy and qpp (where q =
dpM = dy)» with polarization accounted for by insertion ofx . That is, the
Coulombic interaction is treated on a continuum basis. Precedent for such a
continuum treatment is found in computations of cation vacancy- amon vacancy
recombination in a face centered cubic (conceptually similar to VM M;*
recombination) reported by Seitz™ and by Reitz and Gammel, 5 where the
cation vacancy jumps toward the stationary anion vacancy.

Consider the face centered cubic lattice in Figure 9 with divalent cations
M2+, only a few of which are shown., A reference cation M B+ is shown at a
lattice site (000). A cation vacancy O generated by a previous proton collision
has moved as close as position (110) with respect to an interstitial ion M2;t
shown at one of three alternative interstitial positions, (-1/2,-1/2, Ol (- 3/2
-1/2,0) or (-3/2, -3/2,0). Note that, when the reference cation M2} jumps
from (000) into the cation vacancy at (110), this vacancy appears to rmgrate
to a new position at (000). At the latter position VM M}’ recombination is
1ns’cantaneous. Addltlonally, it is apparent that there is an interaction energy
between M2 and Mzg causing the latter to be pushed in the 110 direction.
This 1nteract1on energy, as discussed previously, may be calculated for the
specific case of MgO as follows:

lfl"

Kt (13)

By using ¢ g s units and letting r have integral values j of lattice jumps in the
110 direction, i.e., r = j A2 r,, equation (13) converts to the following:
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Assuming that M%+ were able to move to the saddle-point position
(1/2,1/2,0), it woq'_ld experience a decrease in Coulombic interaction energy
with respect to MZi as follows:

Case 1: M%+ at (-1/2,-1/2,0)

AU = U(j=1/2)-U(j=1) = 1.98/(1/2) - 1.98/1 = 1.98 eV (15)
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Case 2: MZ.IJr at (-3/2, -1/2,0)

1.98 1.98

AU = - = 0.52 eV (16)
JB/2 B/2
Case 3: M%+ at (-3/2,-3/2,0)
au = 228 L 138 - 033 ey (17)

In effect these_values in equations (15), (16), and (17) represent energy
available to MQ+ to overcome the energy barrier at the saddle position
(1/2,1/2,0) taken = 3.3 eV for MgO. For Case 1, this energy push is still
1.32 eV less (3.3 - 1.98) than the barrier height. The time constant T for
thermal motion to overcome this deficiency at room temperature (say 300°K)
is estimated as follows:

22

1/ = v =v _exp[-1.32/(kT)] = (10'°)(1/1.3 x 10°%)

9

4
1

1.3 x 107 sec > 1 year (18)

Thus when M2t is nearest neighbor to Mi2+ (r =10 \/_Z/Z), the former is still
unable to ovefcome, in any reasonable period of time, the energy barrier for
migration. As a consequence, the cation vacancy at {(110) may not (appear to)
move closer, i.e., to (000), and so effect recombination with the interstitial
ME*t, It is evident that greater separation between M2T and M2t makes migra-
tion of M%"' even less probable. £ !

Based on the analysis above, recombination between M2t and the vacancy
is not probablewhenr = 3/2 \/—2>r0. This then represents r* separation for the
MgO face centered cubic lattice. Estimating the limiting or steady state
volume per Frenkel pair on this basis one obtains:

434, 3 34,3 83
3 T 31T(2 »\/Ero) 3“(2 N2 x2.1x10 ° cm)

= 3.7 %10 %% cm>/pair in MgO
1 _ 21 . 3

= 2.7 x 10°" Frenkel pairs/cm” of MgO (19)

3.7 x 10722
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Thus it appears that self-annealing of displacements is not significant in reducing
radiation damage in dielectric oxides. Further, in those cases where damage

is restricted to very small depths (e. g., with low energy protons) Frenkel

defect densities associated with major decomposition (e.g., ~ 5% in the case

of MgO) are expected at steady state.

The separation r* has thus been defined for the case of a cation vacancy
migrating against an energy barrier (activation energy) Ur directly toward a
stationary interstitial cation. In reality of course, migration of a cation vacancy
only reflects the actual migration of a lattice cation. Estimates of interaction
and migration barrier energies involved are illustrated in Figure 10 for the case
of MgO. Curve A represents the interaction energy (on a continuum basis)
between a lattice cation moving in a 1, 1, 0 direction and a fixed interstitial
cation at - 1/2, - 1/2, 0 (see Figure 9 also). Curve B illustrates the energy
barrier for migration of a lattice cation with no interstitial cation present,
Curve C indicates the Coulomb repulsive effect of a nearby interstitial cation
on AU.. Such an effect is seen to be significant only at close separation,
reducing AU, from 3.3 eV to ~1.3 eV only when r = J2 ro (as was shown
earlier). As shown, Curve A must also represent the locus of the minima in
Curve C.

CURVE A
\\ﬂ

CURVE C
(WITH INTERSTITIAL AT - 1/2, -1/2, 0)
|

ENERGY, eV

T
CURVE B
7 1,30\ (WITHOUT INTERSTITIAL)

WK /] 7\

\< \\\ao /// \Q\ s 4/ \‘\\

/ / \
h

/33 r——
/L %4—_%

b -~

-~

0 1 2 3 4 5 6
DISTANCE OF MOVING CATION FROM (0,0,0),
IN UNITS OF (N2/2)r
Figure 10. Energy barrier for migration of a cation away from a
nearby cation interstitial in a MgO lattice.
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2.4 Photochemical Model

Earlier it was reported that the prOJected ranges of solar wind protons
(1-3 keV energies) were expected to be an order of 102 A in inorganic plg-
ment powders of interest. Studies of light scattering by small "particles'
indicate that the scattering range of a 0.3u UV photon in a dense medium
contalmng ty 1ca11y ~1lp diameter scatters (particles or pores) is an order of
102 po (=10 ). It is evident then that proton energy absorption is largely
concentrated at the periphery of the pigment particle. Lattice vacancy
generation, an order of one vacancy/p® collision, is accompanied by energy
transfer via ionization in this restricted region yielding an order of 40 to
125 e'-h’ pairs. The generation rate of both traps and carriers in this pro-
ton range is so great as to permit UV-induced photochemical processes to be
ignored. However, the UV scattering depth extends about four orders of
magmtude beyond the projected p' range and includes something of the order
of 102 particle layers, Thus even though exciton-complex defect interactions
induced by UV may result in low densities of solar resonant centers, the
optical path affected by UV is large enough to warrant consideration in terms
of ultimate coloration kinetics. Thus the proton region will be considered
separately from the UV region,and in effect the final model will contain a
step function in projected depth.

2.4.1 Proton Stopping Region
2.4.1.1 Model Theory

The photochemical kinetics in the proton stopping region may be con-
sidered initially in terms of a five level band model, including: (a) one hole
trapping level H near the valence band (e.g., a cation vacancy), (b) one elec-
tron trapping level N near the conduction band (e. g., an interstitial cation, a
Cr in MgO, or an anion vacancy) and, (c) three recombination levels — one
R neutral (e.g., perhaps FeZt in MgO), one R with a localized e' and conse-
quently possessing a high cross-section for recombination with an h* (e.g.,
perhaps Fel® in MgO), and one R4 with a localized h* and a high cross-
section for recombination with an e' (e. g., perhaps Fe3t in MgO). Such a
model may be illustrated by a band level diagram shown as follows:
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Allowing the symbols H, R, and N to represent the total density of levels
(filled and empty) and using the following symbols to account for charge
carriers:

p = density of free holes

Py density of trapped or localized holes
n = density of free electrons
ny = density of trapped or localized electrons

we may express, in order, the time-dependent trapped hole, free hole,
trapped electron, and free electron rate equations as follows:

dpy/dt = k p(H - py) - PH/Tp - P/ Oy (20)'»
dp/dt = 8t + pH/Tp . klp(H - Py) - kPR - k,pR_ + pH/OH (2'1)

an/dt = k6n(N - nN) - n.N/Tn - nN(ON (22)
an/dt = g, +ny/7 - k(N - ny) - kynR - kgnR, + ny/ O (23)
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where

k1 = rate constant for trapping holes at H

kZ = rate constant for h° recombination with localized e'

k3 = rate constant for localization of h' at recombination center
k4 = r/ate constant for localization of €' at recombination center
k5 = rate constant for e' recombination with localized h”

k() = rate constant for trapping electrons at N

Note: All rate constants in units of cm3/sec-species.

Fp = time constant for thermal release of h* from trap H, sec.
TN = time constant for thermal release of e' from trap N, sec.
gp+ = e'-h’ generation rate by proton, pairs/cm3-sec
O,, = time constant for optical bleaching of trapped h' by the
H t flux I tained in th 1 t =1/10
resonant flux Iy; contained in the solar spectrum, sec, 1’
O, = time constant for optical bleaching of trapped e' by the resonant
N fluxt tained in the sol t sec, = 1/1.¢
ux Iy contained in the solar spectrum, ’ N N
Oy T photon absorption cross-section of h' trapped at H, cmz/photon
N photon absorption cross-section of e' trapped at N, cmz/photon

On the basis of conservation we may write:

R =R+R +R+
O —

The time dependent densities of recombination centers are related through the
following rate expressions:

dR /dt = kPR - k. nR, (24)
dR/dt = k,pR_ + kgnR, - k,nR - k,pR (25)
dR_/dt = k,nR - k,pR_ (26)
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Note that k-values represent trapping or recombination rate constants as
appropriate to the transition. The T-values designate time constants for
thermal release from trap levels. Ojj and ON represent time constants for
optical (solar) bleaching of a single species of trapped hole and trapped elec-
tron, respectively. Hopefully these latter terms can be simplified. For
example, in MgO, Oy is largely operable in the UV (e.g., the F center) and
might easily be omitted from consideration, with Op retained to account for
bleaching of the V; center (2.3 eV).

Generation of trap densities is considered a function predominantly of
pt collision kinetics and has been given previously in equation (4). This
expression gives the time dependent density of Frenkel pairs. Since Frenkel
pair generation effectively determines the dominant trapping level densities
in the proton region, equation (4) may also be used to express H or N as
follows:

3 4 mr*3 pnéd ]
4 rr*3 tanh [ 3 " Rp t] +H(o)
H(t) = , (27)
4 rr¥3 I4 i3 pnd . ]
1+ 3—— H(O) tanhl 3 . Rp t

As an illustrative example, one may assume kg >> k3. Thus the
transition involving kg cannot occur to any significant extent. This one
assumption then reduces the 5-level band model to a more manageable 3-level
model which contains only one recombination level. R .

Additional simplification results if one can select a material in which
the major coloration is primarily related to a single level of only one type of
trapped species. Fortunately, MgO has only one color center in the visible
spectrum. This consists of a hole trapped at a cation vacancy and is termed
the V] center. As a first effort, one may thus examine the above photo-
chemical model for the case of MgO and kg4 > k3. The pertinent expressions
(including equation 27) thus condense to the following:

dp

=L = + - - -
de
dt - klp(H - pH) = PH/TP = IHO-HPH (29)

It has been found that, for this case, both dp/ dt and de/ dt reach steady state
very quickly after changes in H. Thus in effect p(t) and ppy(t) values track the
very much slower changes in H. Thus dp/dt and dpgy/dt may be placed equal
to zero. On this basis a value of k;p may be derived from equation (28) as
follows:
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+1_¢a + /
S H+HpH P’ Tp (30)

1 H - pH (kZ/kl)R—

This value when substituted in equation (29) yields:

+ +
Py | Bpr P Pl (H-py) - py/T -L op. =0 (31
dt H-pFRR_ P/ = Pe' Tp " ' HPH T (31)
. e
Py © ; FRE Tt FT TKR (32)
gp‘l’ - P H H -—_

where: K = kZ/kl

For this simplified three level system then, equations (32) and (27) provide an
explicit expression of the time dependent trapped hole density pp(t), in this
case assumed exclusively to be the V; center in MgO.

A final step in this development of a model for the proton region con-
sists of relating optical change with the time dependent density of color cen-
ters (V; in this example) induced by the protons. Such optical attenuation may
be conveniently expressed by Beer'slaw, since the proton projected range Rp
is less than the diameter of a typical pigment particle. Furthermore, since
the column of particles in a pigment array (in a coating) typically exceeds the
scattering range for solar photons, the path { associated with optical extinction
in the proton region is equal to 2R_. Thus one may express the attenuation in

spectral reflectance as follows:

p?i(o) = exp (—a)\ﬂ) = exp (-oz)\ . 2Rp) (33)
where;
p)\'(t), p)'\(o) = spectral reflectance at fimé t and inifially, respectively
a)’\ = spectral absorption co¢fficient, qm_l
Rp = projected range of proton of energy E, cm
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The spectral absorption coefficient ¢ (max) (at the spectral peak A
of the color center opt1cal absorption band) is related to the density of centers
by Smakula's expression as follows:

o(max.) = 0Cp (34)

where:
C., = color center density, no. /cm3

o = average photon absorption cross section of a center (of half
width W eV, oscillator strength f, and given index of
refraction), in cmz/photon

For the particular example involving the V; center in MgO, one may thus
substitute pH(t) for Cp in equation (34). Further substitution of this modified
equation (34) into equation (33) yields a normalized reflectance expression for
the peak of the V; band as follows:

[ﬁ;{%]x = "exp [-'cerH(t) : ZRP] (35)

max.

By appropriate substitution of e'quati'ons (32) and (27) into equation (35), one
thus obtains the proton-induced reflectance attenuation at the peak of the color
center band,

maX.

in terms of time t, proton flux¢, and various material-derived parameters.
2.4.1.2 Example of Use of Proton Model

A first example might consist of predicting the coloration of high purity
MgO by a 3000 eV monoenergetic beam normally incident at the solar rate,
say 2.5 x 108 pt/ cm?-sec. Outlined as follows are the bases for the calcu-
lated parameters required:

(a) Select 1 ppm Trivalent Impurity Level (e. g. Fe3+ or ‘Cr‘3'+):

6

23 3.65/40.3] 107% = 5.5 x 101® recomb. centers/cm>

R (0) = [6.02 x 10°
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Since one cation vacancy is created by every two Cr3+, the number
of cation vacancies (= no. hole traps initially) is as follows:

H(0) = (1/2)5.5 x 1016 = 2.75 x 1016 hole traps/cm3

Assume initial trapping of holes is small. Thus let pH(O) = 2,75
x 1015 trapped holes/cm

(b) Obtain Value of Tp
From Chen and Sibley6 one obtains (as approximated by a 5 ppm
Fe-content single crystal) 1/e thermal decay of the V1 center in
~7 hours. Thus:

Tp = 7 x 3600 = 2.52x104 sec

{c) Obtain Value of Rp

From Figure 1, one notes that the path for cation displacement

(H generation) terminates at that proton energy (~165 eV) below
which the required displacement energy (~25 eV) cannot be trans-
ferred in nuclear collision. Thus we find that R = 7.09 x 1016 cm,
From Appendix C (Table Cl) we have therefore:

R = R/p = 7.09 x 107°/3.8 =~ 1.87x 107 cm

(d) Obtain Forcing Functions

Based on data in Figures 2 and 7, one may write the following
expression for hole trap generation rate A:

{f

A = pn¢>/Rp (0.56) [(1. 709 hole traps/pt)(2.5 x 108 p+/cm2-sec)/1.87 X 10—6 cm]

i

1.28 x 1014 hole traps/cm3-sec

Based on the energy partition shown in Figure 1 an expression for
e'-h' pair generation rate Ept is obtained as follows:
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(e)

(f)

(g)

(h)

- AE(ioniz.) , ¢ _ 2500 eV/pt 2.5 x 108 p+/cm2-sec

2E ] R i ~
g7pa.1r p (2 x 10 eV/pair) 1.87 x 10 % om

- n

1.67 x 1010 pairs/cm3-sec

1.67 x 1016 free h' /cm3-sec

4]

Obtain Volume/Frenkel pair (see Equation 19) from:

3 22

% mr¥> = 3.7 x 107%% ¢m>/Frenkel pair

Obtain Value of 0y for V; Center in MgO

7

Using data of Chen and Sibley6 and Dexter's ' modification of

Smakula's equation one obtains:

o= 2,6x10° 7 cmz/photon

H

Obtain Value of Optical Bleaching Flux Iy

The value Iy corresponds to that portion of the solar flux which
falls within the spectral half width limits of the V; band. Thus:

—
H

IS(X = 4450A) - IS()\ = 6810A)

1.637 x 1017 photons/cmz-sec

n

Assume Value of K

As a first estimate assume that the recombination rate (k,) is
much greater than the hole trapping rate (k;). This inequality has
been observed experimentally in this laboratory in other similar
work., Thus let K = kz/kl = 1000.



The results of the above described attempt to theoretically estimate
coloration kinetics in high purity MgO with 3000 eV protons only is shown in
Figure 11 by the curve labeled Iy = 0. Additionally, the optical bleaching
effect by the resonant (V) component of the solar emission spectrum is
shown. This solar bleaching is indicated to be quite marked and serves to
suppress coloration. Barring other factors, negligible change in reflectance
is indicated to occur in 10% sec. This corresponds to a curmulative fluence
of ~2.5 x 1016 pt/ cm? which would be obtained in interplanetary space over a
period of about three years.

Quantitatively, solar bleaching is a dominant process because it is found
that its time constant for this system is relatively fast, being of the order of
0.2 second, = (O'HIH)'I. On the other hand 1, = 2.5 x 104 sec. Slowest of all
processes is the rate of trap generation with a time constant of the order of

FRACTION
OF i,
1.0 1.0,

_ \o. 1,0.00
)
< 0.001
>
@
oy
<
2
T 0.9
~<
T~
<
[
|9}
Z
< - |
O
a}
.
wl
[
-
£ os J
:ug ZERO
a I,y = BLEACHING FLUX IN SOLAR SPECTRUM
w
N
5 @ = FLUX OF 3 keV PROTONS

- 8 + 2 —
% =2.5x10°p’/ CM® - SEC
z ky/k, = 1000

0.7 | I
104 10° 1 0 108 10°

IRRADIATION TIME t AT SIMULATANEOUS FLUXES @ AND |,,, SEC

W

Figure 11. Model predicted reflectance
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proton region of high purity
MgO by simultaneous irra-
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and the solar spectrum.
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2.1 x 107 sec,
-1

_ 4.3
T = [3 T pn¢/Rp] .

Thus experimental irradiation and measurement procedures must incorporate
precautions against extraneous optical bleaching effects.

A second effort to test this preliminary proton region model was by
comparison with data reported by Holland8 for 10 keV protons on MgO. The
fluence was 5 x 1015 pt/ cm? delivered at 5.5 x 1011 pt/cmZ2-sec. It was
roughly estimated that the material contained Fe3t or Cr3% at a concentration
of ~100 ppm. Using procedures similar to those described earlier for
3 keV pt — MgO (high purity), proton-induced reflectance attenuation in the
proton region was calculated. This is shown in Figure 12, There is con-
51derable dlscrepancy between Holland's point at 9.1 x 103 sec (= 5x 1015/
5.5 x 1011) and the calculated value shown for zero optical bleaching. This
discrepancy probably results from:

(2) Incorrect estimation of impurity content

(b) Occurrence of limited optical bleaching during irradiation or
reflectance measurement

(c) Limitations of model in its simplified state

While any combination of the above factors could explain this disagreement, it
is believed to sterm mostly from factor (a). Thus the stated MgO purity is
99,41% (by wt. ?). On this basis the density of recombination centers with
localized electrons, R_, will likely be greater than the ~5 x 1018/ cm3
associated with the assumed concentration of Fe3' or Cr3t as 100 PpmMm.
Assumption of a concentration of recombination centers of the order of

800 ppm is probably more reasonable. Such a revised estimation of selected
impurities is shown to yield improved agreement (dashed curves - Figure 12)
between calculated and experimental values upon assumption of a low level of
optical bleaching.

2.4.2 UV Scattering Region

Current evidence reveals no indication of exciton bands occurring at the
absorption edge of high purity MgO. This does not preclude exciton genera-
tion by UV photons (in the solar spectrum) with energy as little as 6.2 eV in
other dielectric solids. Pending experimental evidence that such a UV dam-
age mechanism can exist in the UV scattering range, the photochemical model
for the UV region has been postponed. Such a model will be more meaningful
when based on carefully controlled experiments with UV alone.
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Figure 12. Comparison of calculated and
measured reflective attenua-'
tion in ""reagent grade' MgO
in the proton region by 10 keV
protons.

Most reported descriptions of UV-generated V| centers in mguU, e.g.
that by Lunsford? with \ - 25374, probably do not involve ionization across
the band gap. Instead, e'-h" pair generation by near-UV is likely associated
with ionization of impurity levels within the band gap. In fact Wertz et all0
indicate that the density of trapped holes "produced by 4.9 eV or X-radiation
is strongly dependent on the concentration of impurities in the crystal."
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3.0 HIGH PURITY MATERIAL CONSIDERATIONS

Although it remains to be demonstrated, assume that coloration within
the proton stopping region represents the major portion of the measured pig-
ment coloration induced by combined solar wind protons and the solar spectral
emission. Previous review (section 2.4.1) of the photochemical kinetics in
the proton region, which extends from the surface inwards a distance Ry,
reveals that radiative attenuation of spectral reflectance is most sensitively
affected by the nature of the color center or centers involved. Perhaps
equally important in the case of high purity materials (i.e. those having
initially low densities of trapping levels associated with pertinent color
centers) is the radius r”, below which self-annealing of certain color center
trapping levels can occur. Although less sensitively affected by R, values,
reflectance attenuation remains a function of the optical path (2 Rp in the
colored region.

3.1 Nature of Absorbing Color Center

The color centers pertinent to this effort are those which absorb radiant
energy in the visible and near-IR spectra. A measure of a center's ability to
selectively absorb such radiant energy is given by its average photon absorp-
tion cross section, o. This can vary by an order of magnitude among centers
within a given compound or between different compounds as follows:

o (F-center in Zn0O) = 2.8 x»lO_16 crn2 per 2.8 eV avg. photon
. -17 2
U(Vl-center in MgO) = 2.6 x 10 cm  per 2.3 eV avg. photon

Upon reference to equation (35), selection of a minimum o value would
seem desirable in terms of minimizing reflectance attenuation. Unfortunately
a simple procedure for arranging such selection is not apparent. Although
Ivey type relationships, e.g. A sy « (lattice constant)?, have been shown to
correlate some features of centers in certain generic groups (e.g. alkali
halides!l and alkaline earth oxideslz), broad correlation useful for material
selection purposes does not appear feasible. Instead, compounds will have
to be examined first on an individual basis in terms of such experimental
data as exists. Comparison between compounds may then follow to the extent
possible.

3.2 Radius r>'<

For a given material, trap generation appears to be coloration-rate--
controlling. From ‘equation (27) it is seen that r* determines trap saturation
density and also contributes to the time constant for the trap generation
process. Upon consideration of various dielectric solids, it has been
observed that the trap generation function, pnd)/Rp, is not particularly sensitive
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to material parameters. Thus it would appear that the time dependent trap
density associated with pertinent color centers is quite sensitive to the r
value. ’ :

As demonstrated in section 2. 3. 2.2 the estimation of this critical
radius is quite a complex task for even a simple cubic lattice such as MgO,
There are-experimental methods for estimating these r* values. ‘Thus, in-
those cases where it can be established that the proton-induced defect intro-
duction rate is coloration rate-controlling, r* can be estimated from the
""dark'' decay rate of optical or ERP spectra observed in irradiated speci-
mens. Suffice to say, no ready theoretical correlation of r* with crystal lat-
tice is apparent. An illustration of the nature of the problem is seen by
comparing a face centered cubic lattice, e.g. MgO (Figure 13), with a rhom-
bohedral lattice, e.g. AlpO3 (Figure 14).

The orderly ionic array in MgO will be observed. Note that the Vi\lli -
Mg pair (Frenkel defect) shown at r* separation [= (3/2)\/2_ ro] is intend&d
for comparison with Figure 9.

On the other hand the ionic array in corundum (@ - Al,03) is much less
regular., A unit cell containing two molecules of Al,03 is outlined. In addi-
tion to the electrostatic and overlap repulsive considerations previously dis-
cused for the case of MgO, the inequality between cation and anion charge

Figure 13. MgO crystal model (face
' centered cubic).
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Figure 14. a- 'AIZO crystal model (rhombohedral).

introduces two uncharged vacancies into the unit cell as shown. Thus an
additional complexity enters the problem since these sites would appear to
readily accommodate proton-induced interstitials.

Based on what has been learned, limjted generalization regarding r
values may prove acceptable. Values of r" pertaining to oxide dielectric
solids will probably be small, i.e. <~3 r_ . Variation between solids will
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probably be no greater than by a factor of two, i.e. ~1.5 rgo to ~3 ro. Such

variation could introduce an order of magnitude into the material selectivity
process,

3.3 Projected Proton Range Rp
The range parameter Rp is not very sensitive to compound composition,
Thus it provides only limited selectivity with regard to materials. A recent
review of low energy proton channeling in crystals by McCargo, Greenberg,
and Breuchl3 indicates that crystal structure does play a role in determining
the total random path of the proton in a target. The net effect of such chan-
neling, on the distribution of displacement and ionization damage along a
projected path (which is less than the diameter of crystallites randomly
arrayed in a layer normal to the proton at incidence), remains to be demon-
strated. It is possible, however, that compound arrangement (i.e. crystal
type) may prove to significantly affect collision kinetics and thus Rp values.
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4.0 EXPERIMENTAL STUDY PROGRAM

The objective of an experimental effort ought to be twofold, namely:
(a) provide feed-back useful for refining the degradation model and (b) direct
attention toward potentially useful high purity materials in terms of accept-
able defect structure.

It is conceivable that a given material at a given impurity density level
would be desirable in a variety of forms. Thus thin film (100 to 200A) poly-
or single crystals would offer an opportunity to verify the predicted high
saturation color center densities. At the same time proton range estimates
could be checked and channeling effects observed. Bulk single crystals in
comparison with compressed powders (consisting of particles <lp diameter)
may prove useful in studying damage in the UV region. Compressed powders
would provide the ultimate check on material usefulness and model validity.

In terms of radiation sources, a low energy proton gun, a xenon lamp,
and perhaps a higher energy proton source are required. The low energy
proton beam should be neutralized (with ~ 1 eV electrons) and either mono-
energetic (0. 75 to 3 keV) or distributed in energies about 1.5 to 1. 75 keV.
Desirably, the flux would be variable between~2.5 x 108 and~2.5 x 1011
pt/cmZ-sec in a uniform beam approximately 3 cm in diameter.

In terms of studying UV photoexcitation while minimizing optical bleach-
ing, it is recommended that UV irradiation be carried out at wavelengths
less than 0, 25 to 0,3, the lower wavelengths being preferred. Intensities
of the order of 100 x solar, with respect to this near UV band, are deemed
necessary to avoid unduly long experimental times. The UV source may have
either a continuous or line emission. Thus a 5 KW Xenon lamp with a suitable
high side blocking filter and a quartz condensing lens should prove adequate.
Alternatively, a low pressure mercury are source (2537 A line emission) of
suitable power flux should be satisfactory. It is suggested that these photo-
excitation studies be performed first without simultaneous optical bleaching,
i. e. irradiating with only the selected UV band. Subsequently, simultaneous
exposure to the selected UV band and one or more selected bleaching bands in
the visible-near IR spectrum is proposed.

In certain cases it would be desirable to uncouple optical bleaching from
proton defect introduction. Such irradiation "in the dark'' is difficult to do
experimentally with 1-3 keV pt incident on sub-micron powders because the
projected range of the pt is several orders of magniture less than the scattering
range of visible-near IR photons. Higher energy radiation (5-10 MeV p),
selected so as to introduce defect structure primarily in the specimen bulk,
would facilitate such ''dark' irradiation.
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A number of experimental techniques have been used to identify defect
structure in crystals. These vary widely in ease of application, precision,
resolution capability, information generated, etc. It is thought that, in
terms of the data required to extend this development effort, a combination
of reflectance and paramagnetic resonance spectroscopy should prove satis-
factory. Correlation between such spectra (measured in sity in specimens
irradiated under carefully controlled conditions of temperature, absorbed
radiation dose, and radiation rate) should greatly aid in establishing the con-
trolling transitions in the energy band model. Further, measurements of
spectral decay rates (either thermally or optically induced) can enable cal-
culation of various transition rate constants.

Specifically, the indicated spectroscopic data is designed to provide
certain of the parameters illustrated in section 2.4.1.2. For example, the
time constant for thermal decay of a given, radiation - induced center,

e.g. T, may be calculated directly from the measured, time - dependent dark
decay of the EPR signal or the optical absorption. Additionally, the effect of
the density of a selected recombination center on v, may be observed by
irradiation of a series of specimens of a single material containing varying
densities of a single dopant.

A second parameter of major importance is the photon absorption cross
section of a particular color center, e.g. ¢H. This may be calculated from the
characteristic optical absorption (or reflectance) band of the center when the
oscillator strength f of this center is available. If required, f may be
determined by EPR measurement of the center density (for those centers
characterized by unpaired spin) used in conjunction with spectral band data.

By means of these and other required parameters, (as discussed in
detail earlier) one can formulate a photochemical model that should be
consistent with the net measured reflectance attenuation induced by the
radiation involved. Achievement of a kinetic model consistent with controlled
experiment demonstrates basic understanding of the controlling processes
involved in radiative coloration of white powder pigments. As such it provides
a powerful tool for use in selecting candidate pigments.
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5.0 CONCLUSIONS

A systematic theoretical effort has been carried out. Its purpose was to
identify those parameters which effectively regulate space radiation-induced
coloration in those white powder compounds relevant to spacecraft thermal
control coatings. Such quantitative identification has progressed to a level
which permits the following conclusions regarding radiative coloration:

(a) Crystalline Powders

(1) Maximum color center density is a function of the minimum
stable separation of vacancy-interstitial pairs. This separation is in turn
intimately related to crystal structure and ionic charge.

(2) A large degree of sensitivity to materials parameters is contained
in the absorption band characteristic of a given color center in a given crystal
lattice. Characterized by constants in Smakula's equation, these parameters
include the magnitude of the absorption cross section, half width, and index of
refraction as well as location of the absorption band relative to the solar
spectrum. Correlation of such parameters between generically dissimilar
compounds does not appear feasible.

(3) Pending identification of coloration in the UV region, wide band
gap solids appear to minimize UV contributions to coloration from the combined
radiation environment. At the same time selective, solar, spectral bleaching
occurs which opposes coloration. In this regard, high purity MgO and Al,03
with low intrinsic defect structure still look promising. The reader is
cautioned that much of the reported optical data obtained on these two crystals
is really associated with defect structure rather than the basic lattice.

(4) Impurity content has two important effects. First, such
impurities may act as recombination centers to inhibit color center growth.
Secondly, impurities which differ in valence from that of the host ions
contribute to the initial color center density through the equilibrim density of
lattice defects. The latter are insignificant in the proton range region due to
the high density of injected defects, although in the UV range such existing
defects could be significant. Wet chemical synthesis methods followed by
appropriate vacuum thermal processing seem to offer the best route to high
purity, insulator-type solids.

(5) Certain analytical relationships (photochemical model) have been
developed to estimate radiation-induced reflectance attenuation in the proton
stopping region.

(6) An experimental effort is proposed in order to improve the
model in the proton stopping region, extend it to the UV scattering region,
and demonstrate its ability to select radiation-resistant white powder com-
pounds suitable for spacecraft thermal control coatings.
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(b) Amorphous Powders

Direct application of model theory to solids possessing only short
range order will be limited at best. Some useful information may result by
analogy (applied with great care) with their crystalline counterparts, where
such exist. Fortunately the number of glasses that might prove pertinent to
this development is limited. Therefore the handicap relative to material
selection of amorphous powders should prove manageable.
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APPENDIX A
REVIEW OF PERTINENT SPACE ENVIRONMENT

The pertinent environment is interplanetary space. In this environ-
ment the radiation of prime importance to thermal control coating degrada-
tion is solar in origin and consists of continuous solar electromagnetic and
particulate emission. Solar electromagnetic emission is reasonably well
characterized., The particulate emission of importance is the continuous
solar plasma which flows radially from the sun.

For radiation physics, the solar plasma (wind) presents two interest-
ing aspects. First, the incident particle energies are smaller than those
usually considered in the province of high energy effects. This in turn leads
to considerations of the interaction of a charged particle and a stopping
medium in an energy range that only recently has been explored in its basic
aspects. Secondly, the solar wind is properly a plasma and as such must be
electrically neutral in any macroscopic volume. This means that the protons
and heavier ions must be accompanied by an electronic component. If they
all have the same directed velocities outward from the sun then the electron
energy will be of the order of 1 eV. While this represents a fairly "hot"
electron from the point of view of solid state physics, it is a very slow par-
ticle from the point of view of radiation damage effects. Nevertheless, it
is believed that this electronic component should not be neglected in the
"chemistry" of the effect of the solar plasma on thermal control material.

That this plasma is indeed electrically neutral is evidenced by the flux
of very low energy electrons reported by Serbu and Maier! for IMP 2. Addi-
tionally the plasma contains hydrogen nuclei (protons) and helium nuclei
(alpha particles) in a ratio dependent on velocity., Neugebauer and Snyder?2
have summarized !''the average properties of the positive ion component of
the solar wind as determined by the electrostatic spectrometer on Mariner
II" (Venus probe) as follows:

average proton velocity (Vp) ~ 500. km/sec
average proton density (ITP) ~ 5. pt/cm3

a/pt ratio (@;p = 500 km/sec) ~ 0. 08

Corresponding tofp_, one may calculate an average ener8gy of 1.3 keV., Fur-
ther, the productn Vb yields the average flux ~ 2. 5 x 108 protons/cm?2 - sec.
According to Dr. £1yder3, Mariner II data demonstrates almost continuous
variation in the flux-energy spectrum with time. However there is evidence
to indicate the plasma spectra peaks fall within a limited energy range of
~0.75to 2.5 keV. Additionally an order of magnitude flux variation about
the above average value is probably typical.

The above proton data have been generally confirmed by data from
Mariner IV4 (Mars probe), Mariner V (Venus probe)3 and Pioneer 65,

The electron component, with 1/1837 the mass of the proton and the
same velocity, would be expected to have 1/1837 of the pt energy, or an
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order of 1 eV. Serbu and Maierl did in fact observe an electron flux in the
solar wind similar to pt flux levels with a Maxwellian distribution of ener-
gies . below 2 eV.

At the observed solar plasma densities, mean free paths are obviously
large enough to prevent charge annihilation of individual particles. Thus the
degradation kinetics remain based on charged particle-material interaction.
Because of their low energy, electron-induced ionization effects should be
negligible. Electron excitation effects may warrant further consideration.

Cosmic radiation is not being considered a factor., Deposition rates
in surface coating thicknesses by galactic proton radiation does not appear
serious because of the typical low flux at energy levels of importance. The
temporal character of solar (flare) radiation introduces complexities beyond
the scope of this work, '

Summarizing, in terms of color center kinetics associated with inter -
planetary particulate radiation, induced ionization and displacement effects
are largely determined by 1 to 3 keV protons incident at the rate of 108 to 109
protons/cm? - sec. Interplanetary electromagnetic radiation will primarily
affect color center kinetics by inducing various photoexcitation and in certain
cases photoionization processes as a result of solar photon absorption.
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APPENDIX B

CHARGE STATE OF SOLAR WIND PROTON IN
TARGET MATERIAL

1.0 Implications Pertinent to Damage Model

As reviewed in Appendix A, the neutral solar plasma deposits at a unit
surface in space equal numbers of oppositely charged particles, e'(~1 eV) and
H¥(~1 to 3 keV), in a given time. Because of their extremely low kinetic
energy, the elctrons remain at or very near the surface. There is some
reason to believe they induce a net negative space charge to the surface.

The 1-3 keV protons (H') have sufficient kinetic energy to penetrate
the surface. Immediately upon entry charge equilibration as follows is
permitted:

H +e' =2 y° (B1)

H +e' = H (B2)

The source of the electrons available to charged beams are the valence elec-
trons of the target ions. In this case involving a neutral plasma, the surface
deposited electrons may also effect this equilibration, since (as will be dis-
cussed later) at <3 keV, the probability for electron capture (indicated by
capture cross section g]g in cm?2) far exceeds the probability for electron
loss (indicated by loss cross section gj). To the extent that gas experiments
are indicative, the formation of H is negligible at the conditions of interest.

The sub-model that emerges (supported by later arguments) indicates
that the incident HT equilibrates to a mostly neutral hydrogen atom H° prior
to significant loss of its energy or traversal of its range. The HO then pro-
ceeds to generate electronic and displacement disorder until its energy drops
below ~175 eV, at which time electronic stopping only continues down to
~20 eV. It is apparent that since we are dealing with a ''thick target'" (thick-
ness >>Ry), the ultimate fate of the HO is also important to describing
irradiation-induced defect structure. This ultimate fate, after its energy has
been expended in the creation of both atomic and electronic disorder, is the
implantation as HO atoms. These are capable of creating both impurity and
atomic disorder as follows:
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X X

HY + OF = (OH) +e! (B3)
H + (OH), = (HOH) + e (B4)
(HOH)™ - HOH (g) + v (B5)

2H.1:x + oc’)‘ - HOH(g) + V ' + 2e' (B6)

The symbols are those used by Professor F.A. Kroger, where
superscript x = neutral species; e. g., interstitial atom,
ion at its normal lattice site, or

electronically-filled vacancy

super script dot

n

contributes a net single positive charge to
lattice

superscript prime mark = contributes a net single negative charge to
lattice

subscript i = interstitial species

subscript element refers to ion normally occupying the lattice

site specified
Note that the charged (empty) oxygen vacancy, Vc; ", may singly or doubly

trap electrons. Thus

v o+ e‘»v; (B7)
(B8)

Since the plasma bombardment in space does not permit equilibration
between disorder states, one must resort to describing the transient kinetics
involved. Especially important is the identification of the rate controlling
transitions.

Frenkel disorder generation and e' -h’' pair production complete the

major elements of the solar plasma defect generation sub-model. For a
metal oxide, e.g., MgO, these may be expressed as follows:

O e' + h' (B9)
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x X ..
X X .. "
oX+ v =v)"+o0, (BL1)

Disorder rates (forward direction) are of course dependent on the H' flux
and energy and material constants. In the case of the interstitials, re-order
rates (back transition) are a function of local diffusion (self-annealing) and

. second order annealing.

2.0 Arguments for Neutral Hydrogen Particle

2.1 Lindhard's! Arguments Based on Bohr2 Relation

Bohr distinguishes between the methods applicable to describe the col-
lision of a fast particle of velocity v and charge qj with another at rest (i.e.,
in the target medium) and having charge qp through a parameter K as follows:

qu Zq2

When K > 1, classical mechanics apply., When K < 1, quantum perturbational
methods should be used. Bohr further points out that the average charge q;
of the moving particle in strongly screened collisions is of the following
order:

q; = Zi e = ele/3 (v/vo) (B13)

Lindhard argues that based on equation (B13), the moving ion begins to carry

electrons ''to an appreciable extent' when v < vq Z7'~. This is readily appar-
ent since satisfaction of this inequality is equivalent to stating that q; < eZy,
where eZ; is the orginal charge of the moving particle.

The domain of applicability may be considered in terms of a specific
example of interest, e.g., the interaction of a 1 keV Ht 5 MgO.

E = (1/2) mv® (B14)
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where

E = proton energy in ergs (g—cmz/secz)
m = proton mass, g
v = proton velocity, cm/sec
3 11 12
v = (ZE/m)l/z - (2)10 gV/(6.24 x 10" "eV/erg) - 4.4y 107 cm/sec

(1.67 x 10724 ¢)

(B15)
Since v (electron velocity in first Bohr orbit, i.e., ground state of
hydrogen) = e2/f = 2.18 x 108 cm/sec,
vozll/?’ = (2.18 x 10813 = 2.18 x 10% cm/sec (B16)
where Z; = atomic number of proton.
Thus, it is noted that, in a representative case, v < VOZ].Z/?) at
incidence and the proton immediately can capture electrons, The maximum

degree of neutralization of the proton permitted by charge equilibration at this
incident velocity is obtained from (B13) as follows:

q, (incidence) = (e)(}1/3)(4.4 x 107/2.18 x 10%) = 0. 2e (B17)

Equilibration at this velocity thus results in 80 percent of the particles being
neutral at a given time, this percentage increasing with decreasing velocity,
As discussed later there is some justification in believing that such equilibra -
tion occurs prior to significant energy transfer and thus is representative of
the charge state during energy transfer.

Referring back to (B12), the magnitude of K is found as follows for the
interaction cited earlier (where avg. qp = (12 + 8)/2 = 10):
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2(0. 2e)(10e)

k =
(1.05 x 107%7)(4. 4 x 107)
2
’ 4(4. 80 x 10710cm 32 (12 o -1
(1,05 x 10-27gcm2 sec-l)(4.4 X 107 cm sec_l)
= 20 (B18)

Since k > 1, energy transfer can be considered according to classical methods.

Also note that according to Lindhard, electronic stopping is dominant

when v < v0212/3. When v << VOZIZ/3 (e.g., v=20.015 VOZ]_Z/S) nuclear stopping

is dominant., In the above example electronic stopping is therefore the domi-~
nant energy transfer process, at least initially, Further, it can be shown for
the interaction p+ + MgO (as approximated by pt + Mg2+) using Lindhard's
dimensionless stopping power relationships for both electronic and nuclear
stopping, e.g.,:

1/2

(de/dp)_ = e (B19)

(de/dp)n = (constant)S_n (B20)

that both energy transfer mechanisms become equally probably when the
proton energy is reduced from incident to ~27eV (=E_). Above this critical
energy value (also termed "ionization limit''), electronic transfer (inelastic
process leading to ionization) is dominant although nuclear stopping cannot

be ignored. Conversely, between the minimum energy for displacement Ey, i,
and E. (i. e., Emin < E < E¢) nuclear stopping is dominant, In a practical
sense, since E_ i, (~ ED/G,Z ~ 165 eV for Mg2+) is greater than E_. there is.
no dominant region for nuclear stopping.

2.2 Experimental Evidence
2.2.1 Studies With HY + Solids

Phillips3: 4 reported evidence that a low energy proton beam (of the
order of one keV will charge equilibrate almost immediately after striking
a solid oxide target (e.g., AlpO3 or SiO) and become a predominantly neutral
beam. His measurements with a pure H beam incident on these typical insu-
lator oxides demonstrate that charge equilibration occurs within the first
5-10 ionic diameters along the projected range, at which point an initially
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1-3 keV beam is 85 to 83 percent neutral. The H? content increases with
decreasing initial proton energy.

2.2.2 Studies With Ht 4 Hé’ (gas)

Allison, Cuevas, and Garcia-Munoz® observed that when a pure proton
beam (in keV energy region) enters a molecular hydrogen gas, it develops a
'neutral component which attains the fraction, 1-1/e, of its equilibrium
value before more than a negligible decrement in the beam's kinetic energy
has taken place.'" The growth of this neutral fraction F (in the initially pure
Ht beam) toward an equilibrium value Foo may be expressed in terms of an
electron capture cross section 0}(» an electron loss cross section g1, and
the number of target atoms/cm traversed by the beam designated 1 as
follows:

F, =F__ {1 - exp[-m (001 + 010)]} (B21)

For the special case mentioned above when charge equilibration is

1-1/e (= 0.632) completed, i.e., Fy = 0.632 Fow, the beam must have tra-
versed (0g; + 010)" I atoms/cm?2 with negligible energy loss. For the interaction
HT » H, (gas), Allison, et al., have graphically summarized capture cross
sections as a function of Ht 1n01dent energy yielding the following values at

E] = 1keV:

16

HY + e' » HO; ~ 3 x 10~ cmz/atorn (B22)

I 0-10

° 4 H 4+ e Op1 ~ 10—l7cm2/at01’n (B23)

-1
Thus, (0.1 x 10- 16 + 3 x 10- 16) ~ 3.2 X 1015 atoms/cm?Z have been tra-
versed by the beam at 63. 2 percent equ111brat10n Assuming such an approach
to charge equ111brat10n is equally probable in an atom density ng ~ 5 x 102
atoms/cm3 (an approximation for M%Z‘I' in MgO), the corresponding path of
the primary H* particle is ~3.2 x 1015/(5 x 1022) 6 x 10-8cm 6A. Under
these conditions, the actual (i.e., total) path length is of the order of 300 A,
It is therefore apparent that such equilibrium approach occurs prior to signif-
icant energy transfer.

Further, Fy, is given as follows:

-16
3% 10
F__=019/loygt0p) = 17 —1g ~ 0. 97 (B24)

0 0.1x 10 + 3 x 10
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With the equilibrated 1 keV H' beam essentially neutral (i.e., a given
particle is neutral 97 percent of the time) and approach to equilibrium so
rapid, one may conclude (based on the pertinence of the gas to the solid sys-
tem) that the neutral HC is the dominant charge state prior to energy transfer.

The evidence appears reasonable to conclude that both elastic and
inelastic collision processes occurring in target solids irradiated by the
solar wind involve neutral hydrogen atoms primarily which are implanted
and ultimately concentrated near the projected range, The ultimate fate of
these hydrogen atoms remains to be determined. Professor Krdger suggests
that their possible function as donor states be considered. Such a function
would be important in terms of coloration kinetics. '
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APPENDIX C-
LOW ENERGY PROTON COLLISION THEORY

1.0  Introduction

Low energy (keV range) protons constitute the major charged particle
flux in interplanetary space. Hence a study of energy transfer by lowenergy
ions, e.g., keVIH and keV heavier ions, to ionic solids, especially
inorganic oxides is certainly pertinent to the kinetics of radiative coloration,
The 1H relate to the solar p+*, the primary or incident particle, and the
heavier ions to the knock-ons generated when primaries or knock-on ions
are successful in displacing lattice ions.,

For incident ion energies in the KeV range the work of Lindhard!-6
and his colleagues is fundamental. A review of their work reveals that two
principal energy transfer interactions are involved, namely, (1) inelastic
encounters of the pt with valence electrons of the target ion and (2) elastic
encounters with the target ion as a whole, In the first case average energy
loss per unit path length is measured by the electronic stopping cross section
per ion, Se(E), and in the second case by the nuclear stopping cross section
per ion (i.e., per scattering center), S,(E), both being a function of p+:
energy.

In addition, a number of experiments have now been carried out and
reported with the objective of 1'7e58ting the Lindhard,et al., theory. Of import-
ance are papers by Duckworth’'* ® and colleagues and some recent work by
Professor Suita? and colleagues. In both cases deviations from the theory
were detected, In the former work a periodic behavior in Sg(E) for a given
material as a function of atomic number of the incident ion was found., This
may be interpreted as an effect occurring in the valence electrons that is not
predicted by the statistical Thomas-Fermi model employed by Lindhard, The
work of Suita, et al,, is very interesting as it is concerned with incident -
protons in various metal films, Again, deviations from the Lindhard theory
were found., The discrepancy was explained by consideration of a charge-
exchange process, one involving electron capture and loss by the incident
proton (i, e., equilibration between allowed charge states of the projectile
ion) prior to energy transfer to the target medium,

The analysis which is presented in this appendix is more correctly
applicable to amorphous solids. Crystalline solids do offer channeling oppor-
tunities to the energetic proton with resultant increase in total path length of
the projectile particle. Extending Lindhard® channeling theory in order to
obtain Se(E) values, MCCargo, Greenberg, and BreuchlO recently reported
approximate, total path values for a one keV p* in zinc and lanthanum,

These values were 5 to 7 times greater in the crystalline solid than in the
amorphous solid., At this time it is impossible to infer from such data a
dose-depth profile having practical implications in terms of the coloration
kinetics of pigment crystallites arranged as a coating layer, There simply

is no ready basis for equating channeling-induced increases in the projectile's
total path with an increase in target penetration (projected range). Thus this
analysis of collision kinetics will treat channeling effects in crystals as a
future refinement, pending developments in this area.
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2.0 Lattice Displacement Efficiency By keV Protons (n)

2.1 Total Cross Section for Displacement —
Single Ion or Atom Basis

In terms of keV protons incident on real thermal control coatings, the
average total path length R; for a proton of initial energy E; (say = 1. keV)
is very small compared to typlcal coating thicknesses of several mils, Thus
the pertinent physical model is one involving a ''thick target, ' i.e., one in
which total energy attenuation of the proton energy occurs in the target, Thus
energy transfer occurs between the limits: E =E; at R =0; E =0 at R = Rjy.
Note that R designates the actual average path length measured along the
track of the incident proton, It should not be confused with the average
projected path length or range R, that target penetration measured in a
direction normal to the surface, In the development which follows symbols

R and Ry are used to denote R and Rp, respectively,

""The probability that a given amount of energy will be transferred"
from a primary (incident) particle to a lattice ion 'is best expressed interms
of an area through which the particle trajectory must pass if the energy
transfer is to occur, This area is called the differential cross section for
energy transfer do. Hence, if the particle has energy E and if it transfers
an energy between T and (T + dT) to a lattice ion, the differential cross
section will be given by:''11

do(E, T)

o+ dT (C1)

In order to relate energy transfer with ion displacement, do(E, T) must be
integrated over all possible transferred energies great enough to cause dis-
placement, For the sake of simplicity assume a sharp threshold value

Epa 25 eV as the lower limit of transferred energy required for displace-
ment, For comments on more exact definition of Ep) see reference 11, The
maximum amount of energy that can be transferred (upper limit of integration)
corresponds to a direct collision. From Seitz and Koehler, 12 this maximum
energy transfer T,, between a projectile with incident energy E and mass M;
in any given collision with a target atom of mass M2 at rest,is as follows:

4 M) M, 2

E =a°E (C2)

T (E) =

i (M) + M, )2

where
6 = an arbitrary constant

Integration‘over the above limits in T yields the total cross section for dis-
placement o (E)} as follows:
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T (E)

m
B do(E, T)
0 (E) = / T dT (C3)

Ep

In the remaining discussion, op(E) =0 and T (E) = Tm.

The development of collision theory by Linhard,et al., is based on a
classical mechanical treatment of the scattering in nearly elastic collisions
between low velocity ions and atoms at rest using a Thomas-Fermi expres-
sion for differential scattering cross section. This treatment is considered

applicable when the incident particle velocity v< vyZ]", where vy is the
electron velocity in the first Bohr orbit (=2.18 x 108 cm/sec) and Z is the

atomic number of the particle. Since the maximum energy of protons of inter-
est is 3 keV and since each has a velocity of 7.6 x 107 cm/séc (with Zy = 1), the
condition for application is met. The differential cross section for energy
transfer in a random scattering process is thus written by Lindhard, et al.,

as follows: '

Sn 1
do =

2 Tl/Z T

m

dT
3/2

(C4)

where S, is considered constant at low projectile velocity, The total cross
section for displacement follows by integration of equation (C4) between the

limits ED to Tm:

T T

o m - Sn 1 m aT Sn 1 1 (©5)

D" S Y/ 32 iR |1 T LR |

T T T E T
ED m ED m D m

Substituting a value of T,, from equation (C2) into equation (C5) yields:

Sy 1 1
G~ = - (C6)
D~ gl2 E]:1)/2 CLEl/z
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2,2 Stopping Relations for Compounds

The atomic stopping cross section per atom (or molecule) S is defined
by Lindhard as follows:

1 dE
s=-n 3 (C7)
where:
N = n, = no. molecules/cm3 ; S =&V - cm?/molecule

For a compound A.B__, where j and m are the number of atoms (or ions)
per molecule of Aland B, respectively, Whaling18 indicates the following
relationship between compound (Sp g) and component stopping cross section
(SA and SB):

Sap = 1S, + mSg (C8)

where

j = no, A atoms/molecule A.B
‘ iTm

m = no. B atoms/molecule A ,B

i m
Note carefully that the specific energy loss (generally termed stopping power)
in the compound (dE/dR)AB, from which the range in the compound is
derived, follows from equation (C7):

S +mSB) = jNABS +mN, S

-(dE/dR) g = NppSap = NapliSy A AB°B
(C9)
where
N,p = No. molecules of the cornpound.AJ- Bm/cm3
= & ppp/Mypp
A = Avogadro's no, = no, molecules per mol. wt. of compound
in grams :

MAB = g-mol. wt, of compound
PAR = density of compound, g/cm

Note that the product jNAB(= no, A atoms/molecule A; B X no. molecules

Aj Bm/cm3 = no, A atoms/cm3) is equal to Np, no. A atoms/cn13. Similar
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reasoning leads to the equality mNppg = Ng. Thus equation (C9) may be
expressed either in terms of Npp or alternatively in terms of Ny and Ng.

For the general case of stopping due to both nuclear and electronic
processes the stopping cross sections for each ion may be expressed as a
sum of nuclear S, and electronic stopping cross sections S, as follows:

S, =S . +8 ;  Sp =S p+S.p (C10)

Values of Sy, do decrease rapidly at very low energies (e.g., when the
proton's energy has dropped to less than a few hundred eV), However in
the energy range (say 500to 3000 eV) where displacement is significant,
Lindhard's work indicates that S, is fairly insensitive to particle energy and
may be considered constant, Thus according to Lindhard and Scharff3 we
may write the following expressions:

Sn = (0.83)(1T2'/2) eZ a.ZIZ2 [Ml/(M1-+ MZ)] = constant (C11)

where
a = atomic screening radius in cm

B 2/3 2/3.- 112
= (0, 8853) aO(Z1 + Z2 )

a = first Bohr radius in hydrogen atom
= -hz/(mez) =5,29 x 10_9 cm

Z1 = nuclear charge of_p"IL =1

Z2 = nuclear charge of target ion

M1 = proton mass = 1

M2 = target ion mass

S.o=Cs 5 S;p-=Cp (C12)

Lindhard and Scharff3 also present an expression for electronic stop-
ping power S, in terms of particle energy E as follows:
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ZIZZ v

Se = | &, 8me a, 23 5 32 - (C13)
(z + 7z /3) °
1 2
Since non-relativistic velocities are involved:
. 2
E(in ergs) = 1/2 mv
v = [(Z/m)l/z Elﬂ}6.24x1011 (C14)
where E is in eV. Substituting (C14) in (C13) yields:
, zlzz(z/m)”2 6.24 x 1011 - "
Se = geSTTe a E = k'E (C15)
1 2 o
where
k' = front factor in brackets (in consistent units when E is in eV),.

Substitution of equations (C12) and (C15) into equations (C10) yields the
following:

1/2 12

1 !
s, =C +kAE H S, = C +kBE

A A B B (C16)

Thus one has expressed the stopping cross section of each ion (A and B) in
compound Aj B,, in terms of projectile energy E and certain constants.,

2.3 Cation (A) and Anion (B) Displacement
as a Function of Proton Energy

Seitz and Koehler state that the number of primary lattice atoms (or

ions) displaced, dn, by a primary particle of energy E] in moving an actual
distance dR through a solid is given as follows:

dn = n_op dR (C17)
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This differential expression for the number of displacements per proton n in
terms of actual path dR, displacement cross section op, and molecular
density n, may be rewritten to reflect association with compound A:B, as
follows : | g

dnyg = NpplOplapg ARy g (C18)

The relation between compound (0p)ppg and component stopping cross sec-
tion (0A and op) is similar to that described by Whaling, equation (C8), and
may be expressed as follows:

where

I

j = no. A ions/molecule AjB
m = no. B ions/molecule A.B
j T m

Substituting (C19) into (C18) yields:

dnAB = NAB [j(cD)A + m(oD)B] dRAB (C20)

The total cross section for displacement characteristic of each ion,
(OD)A and (op)g respectively, may be expressed as in equation (C6) as
follows:

S
A 1 1
(Op),y = — - (C21)
A 12 172 1/2
A E EDA o p E
S 1 1
B
(Oplg = —— - (c22)
B 12 | E 12
ap E DB op E
where
EDA = displacement threshold energy for A (typically the heavier ion)
EDB = displacement threshold energy for B (typically the lighter ion)
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4 My My

2
a, = ——
A 2
(M1 + MA)
Ly, = ————————
B
(M; + Mp)?
M = mass (subscript 1 = proton, subscripts A and B relate to the
ions of the compound)
SnA’ SnB = nuclear stopping cross section for individual ion

By substitution of values for Sp and Sp from equation (C16) and
rearranging, one obtains an expression for the differential actual path dRAR
of the projectile in the target material Aj B, as follows:

dR L ~dE (C23)
AB TN . L i 12
AB JSnA+mSnB+(JkA+ka)E

One may now obtain an expression for dnpp in terms of E by substi-
tuting equations (C21), (C22), and (C23) into equation (C20) as follows:

. N j ShA 1 1 mS, g 1 1
n = - + -
AB AB 12 172 12 12 172 12
o.AE EDA OLAE OLBE EDB BE ‘
1 ~-dE
N

s« ! R 12
AB JSnA + mSnB + (JkA + ka) E
(C24)

Equation (C24) may be rearranged as follows:

66



iS A mSmB .
2t 2
G.A QB

(C25)

Note that S, may be considered constant in the energy range of interest,
F.quation (C25) may be simplified by grouping constants as follows: Let

iSnA . mSyp
By =~ r 12 ’ B, = g 12 ’ €1 =Bt B
A “DA B ®DB
Dy === ; D, =——— ; C, =D +D,
0. a
A B
' ; C ik k.
C))f;bAernan ; 4—JA+mB

(C26)

Substitution of the aboVe-cons_tants_ from equation (C26) into equation (C25)
yiclds: '

-C1 dE C2 dE

dn = +
AB 12
(C3+C4E1/2)E1/2 (C3+C4E )E
(C27)
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Equation (C27) may be rearranged for integration as follows, where E; =
incident proton energy and E, = minimum proton energy required to cause
lattice displacement:

E, E2

1/ dE +CZ/ dE
n = - =
AB Cy c,/c, ; g2\ gl2 7 Cy c./c. +EY\E
E, E, 3/Cy

(C28)
For purposes of integration, temporarily let E = x2 in equation (C28),

integrating the first term directly and the second term by conversion first
to the sum of two rational fractions. Thus, we have the following:

12
E,
1 / 2 xdx +C2 / 2 xdx
n = = = —_
C (C./C, +x)x C 2
E 12 3" 74 4 Ell/z (C3/C4+x)x
/2 Ezlfz
] zc1 dx 2 C, dxe
= c,/C, T x T C (C./C, +x)x
4 1 3/ %y
E E
1
12 7]
E,
c c./c, +E 12 c 1 c /C4+E21/2J
2 Lgn|_3 4 11/2 +2 Z(Cﬁ )z; -3 7
C
4 | C,/IC,+E, 370y E,
1/2
C /C4£+E1 ]
12 .
cC. |C.,/C,+E C C/C +E1/z E/2
1 3/ Ty 2 1 2
:ZC in V7 -l—ZC—&n 12 2
4 C3/C4+E2 3 C3/C4+E2 E1 }
c. ¢ c./c. +EM| ¢ g /2
nyg = 2 c_l + ?:E' in|— 4 11/2 - CZ in 11/2 (C29)
4 3 C,/C, +E, 3 E,



Note that npg =n, +np. Thus an expression for ny may be inferred
from equation (C29) by referring back to the constants C; and C, and insert-
ing By for C; and D2 for C2. A similar procedure was used to obtain an
expression for ng. These expressions are as follows:

B. D C./C, + B2 D E 12
n, =2 C—1+C—1 ) 3 4 11/2 - Cl in 11/2 (C30)
4 3 C3/C4+E2 3 E,
B D c./c, + B2 D R 12 )
_ 2 2 3/ 4 1 2 1
np =2 o te- in 772 ke in 73 (C31)
4 3 C3/C4+E2 3 E, j

Recall that Epp and Epp represent the minimum energy which the
proton must transfer to cation A and anion B, respectively, in order to dis-
place either ion. Further, the maximum energy that a proton of energy E
can transfer to a target is, from equation (C2), equal to @2 E. Therefore
in order to cause a displacement a proton must have an energy = ED/OLZ.

It is assumed that typically the anion, e.g., 02-, will be lighter than
the cation and further that the proton can effect anion displacement at
residual energy levels below which it can transfer sufficient energy to cause
cation displacement, This assumption may be expressed as:

2
EDA/O"A > E

2

/OLB .

DB

It is for this reason that expression (C29) for npp can not be evaluated
exactly, there being no common limit E for cation A and anion B. Appli-
cable limits of integration are thus:

For n, (equation (C30) )

2
E1 to EZ = EDA/G‘A
where:
E. 2 E = E /oc2
1 - DA’ A
SnA = constant ; SnB = constant
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For np (equation (C31))

2
E,) to E, = Epgl/og
where:

2
E, 2 E 2 Eppglog

SnA = constant 5 SnB = constant

Note that the residual proton energy, below which no ion displacement can
take place, can still induce ionization between the limits Epp /cx,EZs and ~2 Eg
(where E, = band gap energy). In the case of the heavier ion, the range of
residual proton energies permitting ionization and/or ""heating'' effects is
even larger (see above), including energies between EDA/OLA and ~2 Eg.
Thus, when the residual energy of a proton falls between

2 2
EDA/U.A and EDB/(XB ,

it is possible for it to ionize ion A or ion B or to displace ion B wupon
collision with either. Of course, at these low energies (< ~150 eV) it is
difficult to distinguish between energy transfer resulting in ionization and
that resulting simply in thermal effects.

3,0 Distance Traveled by Proton
in Target Compound

3.1 Average Proton Random Path R Over Which
Ion Displacement Occurs

By introducing the applicable constants from equation (C26) into equa-

tion (C23) an expression for the differential actual path dRpp may be
obtained as follows:

/ AB i, / 4
AB ~ ° 12
o E, NAp(C3+CLE™)
E
1 / ! dE ©32)
N C 1/2
AB 74 £, (C3/C4+E )
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Integration of equation (C32) is facilitated by a change of variable such that
E = x2, On this basis dE = 2xdx, and the variable change converts equation
(C32) into the following expression:

RAB
dR, . = — 2 — x| ax (C33)
/ AB  N,p Cy ,/ [(C3/C4)+x]

(o]

The fraction under the integral sign at the right may be reduced to an integer
and a rational fraction as follows:

2 /’ C3/Cy 2z r c, }
R = dx = - =—4n(C,/C  +x)
AB "N,z C, C,7C, ¥x N,p C, L <, 3/

(C34)

Reverting back to the variable E and substituting appropriate limits for
evaluation transforms equation (C34) into the following expression:

2 C E1
12 3 ( 1/2)]
R ERNE—— - =2 |[C,/C + E
AB NAB C4 [ C4 3° 74
E
2
12
AB 74 4 C3/C4+E2

Path Rpp will consist of an initial random movement, during which
both ions may be displaced, followed by a distance over which only the light
ion (presumably the anion) is displaced. Finally, as discussed above, there
will be a small terminal portion of the path over which no displacement can
occur, That portion of the random path over which cation and anion dis-
placement can take place is termed Rp., That random path over which anion
(assumed to be the lighter) displacement occurs is termed Rp. Both Rp
and Rp can be evaluated from equation (C35) by (a) insertion of proton
energy limits (E; and Ep) appropriate to cation and anion displacement
respectively (see earlier discussion), and (b) substitution of Nap or Ng for
Npp as required. On the basis that Ry > Ra, it is thus seen that the fotal
actual path Rop in a compound Aj Bm is slightly greater than Ry,
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3.2 Average Proton Projected Range Rp

In those cases involving proton incidence on metal oxides, the mass
ratio Mp /M) (termed U) is much greater than 1. For this pertinent situa-

tion, Schiottl4 has graphically presented a projected range correction curve
for protons (U/k = 13,1), Note that for Ht + Mg2+ (as MgO):

0.0793 212/3221R(M1+M2)3/2
k a 374 /2@ 1.79 (C36)
2/3 2/3 3/4 1
(z1 +Z, ) MM,
W= M, /M, = 24.3/1 = 24,3 (C37)
B/k e 24.3/1,79 & 13,6 (C38)

with Schiott noting that the projected range correction dependence on u/k is
not very strong. Further, the Lindhard dimensionless energy expression €
for the above interaction at E(HT) = 3000 eV may be evaluated as follows:

S12
[0.8853 a, (zlz/3+zzz/3) ]MZ
€ =< - E where: E is in ergs

- 2
ZIZZ e (I\/I1 +M2)

-12 3
) (24.3) 3x10 eV

7
(1)(12)(4. 8 x 10710 e 12 o1y (1424.3)

(0.8853)(5.29 x 107 cm) (1273 4 122/
=3.1

624 x 101! eV/erg

(C39)

Corresponding to this value of ¢ = 3,1 is the ratio f= R/Rp= 3.8 which is
to be associated with the path of a HY ina M + target., The following tabu-
lation indicates the sensitivity of 8 to target parameters for the case of a
3000 eV Ht projectile:
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TABLE Cl. - VALUES OF R/R, FOR A 3000 eV PROTON INCIDENT

ON VARIOUS MATERIALS

Target
Ton M, | % Hinhards b ou/k | e B=R/Rp |
Mg®F(as Mg O) 24.3| 12 1.79 24,3 | 13.6 |3.12 3,8
ArY (as ALO,) | 27 |13 1.99 27 | 13.45]2.85 4.0
5i*" (as 510,) 28 |14 2.08 28 | 13.55|2.58 | 4.2
La’" (as La,0,) | 139 |57 10.67 |139 | 13.1 |o0.429] 10.0
Note: The dependence of B on target material is observed as not large.

Values of Rp (see section 3.1) and f may be combined to yield extimates
of the projected range Ry, over which a proton of initial energy E; can effect
catron displacement. Such Rp (cation) estimates are presented in Figure Cl.
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4.0 Bulk Displacement Rate of Ions in the Crystal (n')

The bulk or volumetric displacement rate n' of ions in the lattice may
now be obtained, The number of primary displacements per proton n is
given by equations (C30) and (C31), It has been estimated that, when protons
of energy <3000 eV strike targets of interest, the average energy of the
knock-on ions is <~70 eV, Thus, on average, displacement production by
knock-ons can be ignored, and the total displacement efficiency as primar
displacement effectiveness, By means of the proton flux, R, and B(= R7Rp)
one may estimate a value for n' as follows,

n' = n<P/Rp = ndB/R (C40)

~where:

B = R/Rp

a constant which is a function of proton energy and of
proton and target parameters as shown earlier

(=]
H

proton flux in p+/cm2-sec and may be considered
monoenergetic as a first approximation

5.0 Lattice Ionization Yield by keV Protons

Equation (C23) may be arranged, upon substitution of appropriate
constants from equation (C26), to yield the following expression:

~-dE = N B,C3dR+N

12
A C,E )dR (C41)

AB(4

This resulting expression may be approximated on an incremental basis as
follows:

-AE = BC3 AR + N C El/Z)AR (C42)

Np AB( 4

Note that the first term contains C3 which represents nuclear stopping Sy
and may be considered independent of E (see section 2,2). Electronic
stopping (resulting in ionization) is given by the factor Cy4 E!/2 in the second
term of equation (C42),

This equation may be numerically integrated to display the partition of
the proton's incident energy E between nuclear absorption (first term) and
ionization (second term), Thus, upon selection of an incident E value, say
Ej = 3000 eV, and a small increment of range AR; (say ~0.02 R), a cor-
responding energy loss AE} is calculated. This yields a new energy ‘
E;(= E] - AE) at the end of ARl. Based on E,; a new value AE; is obta1ned»
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for a second range increment AR,. This process is repeated until E; as 2 Eg

Summation of this incremental energy transfer to ionization per proton of
initial energy E] (second term in equation(C42))yields the ionization energy

deposited per proton.

It is assumed that the energy required to generate an e' - h' pair is
~2 Egy. On this basis the pair generation rate per proton is obtained by
dividing the ionization energy deposited per proton by 2 Eg'
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APPENDIX D

ENERGY BARRIER FOR CATION VACANCY MIGRATION (AU,) IN
AN OTHERWISE PERFECT LATTICE

1.0 Introduction

For energy summations in the defect lattice various Coulomb and non-
Coulomb (overlap repulsion) interactions among ions and between ions and
defects have been considered. Where appropriate, discrete Coulomb inter-
actions have been considered, i.e., those involving the nearest neighbors
(n.n.), next nearest neighbors (n.n.n.) etc. of the defect, Coulomb inter-
‘actions involving remaining (''distant') ions have been "averaged' on a con-
tinuum basis, with electronic polarization segregated according to cations
and anions and displacement polarization averaged over both types of ions,

Non-Coulomb interactions are by their nature short range effects.
Hence changes in repulsive energy induced by defects (vacancies or inter-
stitials) have been considered significant only where involving (a) nearest,
next nearest, and third nearest neighbors to the defects comprising the
saddle-ion configuration and (b) nearest neighbors in the single cation vacancy
configuration. In both cases, overlap interactions have been treated
explicitly.

Energy summation over the perfect lattice with respect to a npormal
lattice site is most conveniently described by a Madelung sum. Ewald! or
Evjenz summation methods are convenient where the perfect lattice energy
is to be evaluated at a position displaced from a normal lattice site.

Theoretical determination of the energy barrier for migration (AU,) of
a cation vacancy in an otherwise perfect crystal has involved two major steps
as follows, patterned after the work indicated:

1.0 Evaluate the energy (work) Uj to extract a single cation from a
perfect crystal lattice, Method of Mott and Littleton3 with
refinements by Tosi, Fumi, and co-workers4,5,6,7 or alternate
technique by Tosi and Doyama., 8

2.0 Evaluate the energy Up to "extract from a perfect crystal two
next nearest neighbor cations and introduce one of them into the
saddle-point position between the two neighboring vacancies'4
which result, Method of Guccione, Tosi, and Asden’ce.4

Attention is called to the fact that the outlined procedures below are applica-
ble to any crystal lattice type. On the other hand, specific energy terms and
calculations which are presented are applicable only to a face-centered-
cubic crystal lattice (FCC) containing either a single cation vacancy or a
cationic saddle-point configuration.
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2.0 Energy to Form Single Cation Vacancy (Uj)

2,1 Mott and Littleton Method

This method rests on a model in which the n.n, to a cation vacancy
(six in the case of the cubic lattice sketched below) are treated explicitly in
terms of:

(1) Coulomb interactions,

Electrostatic energy changes induced with the introduction a
point charge (i.e., the cation vacancy) and resulting from polarization
(electronic and displacement) and subsequent interaction between ionic and
displacement dipoles and the charge-induced electric field. Also, electro-
static interactions between lattice charges.

(2) Non-Coulomb interactions.

Overlap repulsion interactions take into account displacement of
n.n, ions to the cation vacancy as a result of the polarization induced by the
effective charge located at this vacancy.

All other ions are treated as distant ions and averaged on a continuum basis,
considered either separately as cations and anions or an average of the two
species,

As presented so clearly by Bassani and Fumi (see their equations (6)),
the first step involves the establishment of the outward electrostatic (Fg) and
repulsive (F,) forces acting on the six-negative n.n. (#1 through #6) in
terms of a uniform explicit displacement Vr, indicated in the following
sketch,

Oy vr
! o]
—+ +— O = CATION VACANCY
yr vry + = CATION
‘o 5 N O = ANION (NO. 5 AND
—o0 O——0— NO. 6 ABOVE AND BELOW
6 vr PLANE OF PAPER)
o ro, = n.n. SPACING
+ +
I b}uro
e—. —

r
o

Figure DI. N.N. anion relaxation around
single cation vacancy in other-
wise perfect FCC lattice.

Balancing of these forces occurs at equilibrium. Hence a common solution

to these two force equations (conveniently obtained graphically) yields the
equilibrium displacement vr.
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Upon establishing the value of vV and its corresponding equilibrium
force value, the work done U] in extracting an ion (e.g., a cation) may then
be formulated as the negative average of the potential energy of the cation in
its normal position and in the field of the displacements and dipole moments
appropriate to the Vaca.ncy.7 Thus for a cubic lattice one proceeds as follows:

2.1.1 Electrostatic Energy Contributions (Coulomb)

2.1.1.1 Interactions Between Lattice Charges (Monopole) — (U;)c

1 .
(U -3 l potent, energy cation) normal + (potent. energy Catlon)distorted
lattice lattice
[ qZ qZ qZ
E oMt e e gy
. o o o
r 2 2
1 i_ q q 6V
E{ Y <1+\) (D1)
[ "o o
2
-9 3V
T (G'M 1+v) (D2)
o
where
e = electron charge, c.g.s. units
q = ze = ionic charge, c.g.s. units
Q, =

M Madelung sum (based on r_ ) for FCC lattice

T
o

interionic spacing (n.n.) in cm
z = nuclear charge (valence)

Note that in equation (D1l), the potential energy of the reference cation (i.e.,
taken at an origin of 0,0, 0) in a normal or perfect lattice is described by the
Madelung energy, - [g4/ry,] dp. When the six nearest neighbor (n.n.) anions
are displaced Vr, radially outwards from 0,0,0 as a result of displacement
polarization (fictitiously assumed to occur with the reference cation still in
place), the Madelung energy no longer correctly describes the energy of this
cation. The: ?expressmn in square brackets in equation (D1) contains the
Madelung enérgy of thls cation and two correction terms. The first cor-
rection term%%. 6 q /ro, ‘feduces the Madelung energy (note oppOSIte sign)

by an amount equal to the electrostatic energy contributions of the six-n.n.
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anions, normally located at a distance r, from the origin (and included in
the Madelung energy as such) but in the distorted or polarized lattice no
longer there. In the lattice distorted by polarization (by the electric field
created upon extraction of the reference cation) the six-n.n. anions relax
outwards from the origin (0, 0,0) to a distance (1 + V)r,. The electrostatic
energy contributions of these n,n, ions in their new positions must be added

to the Madelung energy of the reference cation and thus represent the second
correction term in equation (D1), - 6 qz/[(l +vV) roj.

2.1.1.2 Interactions Between Dipoles and Electric Field Giving Rise

to Dipoles (Polarization) — (U1 )P

(U)p = -5 L (+a)(V ) +(4q) (V) |
normal dipoles on
lattice 6-n.n, anions
+(Vp) + (V) (D3)
all other all other
cations anions distorted
- lattice

1 q 6m q !
TS P _(_) , (-—)6.3346 M
2 T (1+\))2 s +

j— 1
- (r )4.1977 M } (D4)
o
q 6bm 1 '
=5 ' 2+6.3346 M++ 4,1977' M (D5)
o | (1+v) B



where

VP = polarization-induced potential at cation site (0,0, 0) by species
indicated
mr = charge displacement in 6-n,n. due to electronic polarization, cm
_ 2
m =0 Fe/(q ro)
¢ = anion polarizability, cm3

Since no polarizing field exists in the normal lattice, there is zero
induced polarization potential at the position of the reference cation (0,0, 0).

The second term in the curly brackets in equation (D3) represents
polarization energy contributions induced at 0,0.0, These result from
interactions of the polarization-created, electronic dipoles on the six-n.n.
anions with the electric field emanating from the origin which created them,
The potential V induced at a point i by a dipole may be expressed:

m
—— e~
+q -q
13 ¢
v =& 31' 9 (D6)
/
r 4
;1 T
II
r
i.o
|u] |z cos 8]
B | cos 8
Vv = 3 = > (D7)
r T
where
—’ i »
K = dipole moment
N i
r = vector separation between point and center of dipole
-+ -
B = angle between r and MU, increasing angle measured from the

dipole arrow tip counterclockwise:

In the case of the potential induced at 0, 0,0 by an induced electronic dipole

on a n.n, anion, 6 = 0, Also recalling that n.n, separation in the distorted
lattice is (1+V)r,, one may obtain the dipole-induced potential at 0, 0,0 from
equation (D7) as follows:

scalar quantity
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n. . N,
[vp(o,o, oﬂ = - = - St (D8)
by

[(1+v)ro]2 (1+\))2 rj

My 5 €0s(0) ) B

one-n.n,

It can be shown that the negative sign arises from the fact the dipole is on a
negative ion, The electronic dipole moment on any ion may be defined as
follows (see sketch above):

4 = charge X separation = (q) (mro) (D9)

Substituting (D9) in (D8) and accounting for all six-n,.n, yields:

6qmr0

6bm
\Ys (0,0,0)] e - 4, (D9)
{ P 6-n.n. (1+wv) rf o (1 +\))2

The energy induct?d by this potential at the origin on the cation at the origin
(+q) is then: (Ul)P = (+q) Vp, as shown in equation (D4).

The third term in equation (D3) represents the polarization energy
contributions to the reference cation by all other lattice cations. Similarly
the fourth term represents the contributions by all the lattice anions to the
reference cation with the exception of the six-n.n, anions. These contribu-
tions are formulated according to Mott and Littleton (see their equations
(3.1), (3.2), and (3.3)) and summed according to Jones and Ingrarn9 for a
cubic lattice where the separation distance between the origin and any lattice
point is raised to the fourth power. This latter arises from the fact that:

M (distant cation or anion) = f (r_z)

V (at origin by distant ion) = f (p./rz)/

LV =f (r_4)

! !

) The parameters My and M_ contain ratios of the total ion polariza-
bility to that of the molecule, for the cation and anion, respectively., These
parameters are based on the fundamental relatipnship between the electric
field in a dielectric, the displacement field D, and the total polarization
P of the dielectric, Thus one may write the following expression:

B=D-an P (D11)

In a spherical system the directions of }_35, ]_ZS, and P are the same; and hence
(D11) may be rewritten in terms of scalars:

E=D-4m P (D12)
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By definition, E (vacuum) = D = force/unit charge= q/rz, where r = separa-
tion between the charge q and the point where its field is measured. In a
dielectric medium E must be less than D, by an amount proportional to the
dielectric constant i.e,, the static or low frequency value K in this case
where ions in the continuum are considered to undergo physical displacement,
Thus we may write: E = q/(Kr2), Substitution of the values of D and E
from above and rearranging yields a value of P as follows:

P—(q q)l—l(l l)q (D13)
r2 Kr24n 41 K 2

It seems reasonable to assume that this expression for the total
polarization of the continuum P may be apportioned between the total polari-
zation (i.e., electronic and displacement) of cations P, and of anions P_,
We may express this apportionment as follows:

P = f+P + f_P (D14)
where

f+, f_ = fraction of continuum polarization assignable to cations and
anions, respectively

Note that the smallest volume representative of the continuum is that asso-
ciated with a molecule (i.e., a cation-anion pair) and equals ng’. In terms
of electronic polarizability of the ions, a4 or &_, and displacement polariza-
bility o of the medium, the total polarizability of the molecule is equal to the
sum: O4 + &_ + 20, Thus the partition fractions may be written as ratios of
total ionic polarization to total molecular polarization as follows:

o +a
f+:on++oa_+2<nn (D15)

a_ + o
f_-:a++0t._+2cx (D16)

Since the total polarization of the continuum is by definition the total
dipole moment per unit volume and also since both P and the dipole vector
are in the same direction, we may write the following scalar expression for
one molecule of the continuum:

or
3
" =P2r] (D17)

85



Substituting from (D15), (D16), and (Dl4) into (D17) yields:

mol,

oy o +a 3 o + 0
=27 o +o_+20 Pr2r] o, +0_+ 20 P (D18)

Substituting the value of P from equation (D13) into (D18) yields:

W =3 e 1 <1_1_) q
mol. o 1/2(oc++on_)+a 4m K r2

R o +o e 1) 94
o 1/2(a++a_)+oc 4m K w2

where by definition
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v 238 (L
—M+ro( 2)+M_ ro(z) (D19)
r r
11 a, +o
4m K 1/2(ou++a_)+a

! ) o +a
4?(] ’W) 1/2 (@ +a_)+a

separation between the reference charge and a reference molecule
in the continuum

static dielectric constant (i.e., measured at frequencies less
than the lattice vibration frequency, ~ 1013 sec- , so that ionic
displacement is able to take place)

C1s .o 3
electronic polarizability of cation in the crystal, 10 cm

electronic polarizability of anion in the crystal, 10 cm3

q2 /p = displacement polarizability of crystal

restoring force per unit displacement which opposes ion dis-
placement resulting from polarization



Since =Mt it may be seen by inspection of equation (D19) that the
mol. h

total dipole moment of a cation (p._l_) or an anion (4_) in the continuum may be

expressed as follows:

R
“+_M+ro( 2) (D20)

T

M (L
Moo= M r (1-2) (D21)

The value of p, the restoring force/unit displacement, is obtained by
differentiation of the change in energy per ion pair caused by overlap repul-
sion when the ions are displaced by polarization. When the Born-Mayer
expression for overlap repulsion energy,

r4'_ +r -1T
Ugp(r) =b G, _ exp (—--—5——)

is used, the value of p is found to be:

p:4b(iz-pir)exP(r++:'_r°) (D22)
P o
where:
b = Born-Mayer constant, ergs
p = Born-Mayer constant, cm
IR Goldschmidt values of ionic radii
4. = Pauling io;lic dependence factor = 1.0 for overlap repﬁlsion

between:ions of opposite sign

2.1.2 Non-Coulomb Energy Contributions

The Born-Mayer expression for overlap repulsion energy between ions
has been used to describe the non-coulomb energy contributions, This has
been found satisfactory for the case where r = r_, the situation which pre-
vails here where the work to form a single cation vacancy in a perfect lattice
is to be determined.

As with previously discussed energy contributions, the overlap repul-
sion contribution to the reference cation is taken as the negative average of
the potential energies before and after displacement, Only that repulsion
between the reference cation and its six-n.n, anions is considered signifi-
cant as indicated in the following expression:
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1

(cation energy) + (cation energy)

Nl =

(Ul )R normal distorted

lattice lattice

r +r -r r, +r ~(l+v)r
1 + - o) + - o}
_7{6bc+_exp[ 5 ]+6bC+~exp|: 5 }}

[1 + exp (—\)ro/p)] (D23)

2.1.,3 Summation of Energy Contributions

The Coulomb contributions, equations (D2) and (D5), and the non-
Coulomb contributions, equation (D23) may now be added to yield Uy, the
energy to form a cation vacancy in perfect FCC lattice as follows:

U, = (U + (U)p + (U] (D24)

2.2 Tosiand Doyama Method8

This procedure is analogous to that used to obtain saddle point energy
in a relaxed configuration, i,e., one in which equilibrium displacement has
occurred, Three basic steps are involved: (1) formulation of the energy of
the unrelaxed lattice after cation extraction, (2) determination of the energy
released upon relaxation of the crystal around the cation vacancy and (3) sub-
traction of (2) from (1) to yield the energy of the relaxed lattice with a single
cation vacancy, These first two steps are outlined as follows:

2.2,1 Energy of Unrelaxed Configuration (Ull)
2,2,1,1 Madelung energy

2.2.1.,2 Polarization (electronic only)
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2,2.1,1.1 Of nearest neighbors (n.n,) due to effective charge on
the vacancy

2.2,1.1.2 Of nearest neighbors due to dipoles on nearest neigh-
bors and all other more distant ions

2.2,1.1.3 Of non-nearest neighbors due to effective charge on the
vacancy )

2.2.2 Energy Decrease Upon Relaxation
2.2,2,1 Coulomb energy between nearest neighbors
2.2,2.2 Coulomb interaction with external lattice
2.2.2.3 DPolarization
2,2,2.3.1 Of nearest neighbors with effective charge at the vacancy
2.2,2,3.2 Of nearest neighbors with dipoles on nearest neighbors

2.2,2.3.3 Of nearest neighbors due to displacement of nearest
neighbors

2.2.2,4 Non-Coulomb relaxation of the 30 "nearest neighbors' to the
relaxing ions (i.e., the six displaced nearest neighbors to
the vacancy) and of the 48 '"next nearest neighbors' to these
displaced ions

2.2,2.4.1 Polarization displacement included explicitly in over-
lap repulsion terms

2,2.2.4.2 Alternate solution with Born-Mayer-Verwey potential
for all interactions where the separation < r, (inter-
ionic spacing)

3.0 Energy of Formation of the Relaxed Cationic Saddle-Point
Configuration (U,)

Computation of the energy barrier for migration (AU,) of a single
vacancy in an otherwise perfect lattice requires evaluation of the lattice
potential (or lattice energy) along certain paths between normal lattice posi-
tions. Although imposing some limitation on ultimate usefulness, the com-
plexity of the calculation dictated selection of one of the simplest lattices as
a basis for initial calculations, namely the face centered cubic lattice. In
this lattice, the pertinent cation migration path is a diagonal one from a
0,0,0toal,1,0 position and passing through the saddle-point at 1/2,1/2,0.
Schematically, this may be indicated as follows:
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Figure D2, Relaxed saddle-point configuration in
otherwise perfect FCC lattice.

Cation movement is indicated as occurring from normal lattice site E(O, 0,0)
to vacancy a (1,1,0), with the cation shown in the saddle-point position
(L/2,1/2, 0)_. Cation vacancy migration, of course, occurs in the opposite
direction,

Note that migration of a lattice cation is based on an otherwise perfect
lattice containing a cation vacancy. As the lattice cation moves to the saddle
point configuration, critical to the AU, value, three defect states result,
namely cation vacancies v, and vy, and the lattice cation at the saddle-point.
The 10 nearest neighbors to these three defects are numbered and shown in
the above sketch in their relaxed positions. The displacement polarization
resulting in the ion displacements shown (i.e. ,J2 & r, for #1 and #10, Nr,
for ions #2 through #9) are attributed to the combined electric field of the
three defects. Anions #6 and #8 are above and #7 and #9 are below the plane
of the paper. Shown without numbers are the next nearest neighbors to the
defects and some of the third nearest neighbors. Certain of these are above
and below the plane of the paper, although not so indicated. Attention
is called to the fact that in the discussions which pertain to the unrelaxed
lattice anions #1 through #10 are considered to reside at their normal sites.

The energy of the crystal in the relaxed saddle-point configuration
(relative to the perfect crystal) is obtained by adding the decrease in energy
of the crystal as a result of displacement relaxation to the energy of the
crystal in the unrelaxed saddle-point configuration (relative to the perfect
crystal), The steps involved in suck a computation together with terms
applicable to a FCC lattice are outlined below.
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3.1 Energy of Unrelaxed Configuration (U2|)\
3.1.1 Electrostatic (Coulombic) Energy Contributions
3.1.1.1 Interactions Between Lattice Charges (Monopole) — (UZI )C

Computation of interaction energies for the case of the unrelaxed
saddle-point configuration is aided by reference to figure D2 for the condition
N'=0, & = 0, This condition imposes the requirement that the 10-n.n.'s to
the three defects are held at their normal lattice sites, i.e, they are not
permitted to relax to displaced positions.

The electrostatic potential energy to a cation (or anion) at a normal

lattice position in a perfect crystal is - %— apg. When one cation (say at

0,0, 0) is extracted from the lattice work must be done; hence the energy of
the lattice is increased by + = Ot.M.
To

When a second cation (say at 1,1,0) is extracted, work must be done
against the Coulombic energy this cation would have in a perfect crystal
' 2
(= the Madelung energy = - 3— %ps) plus the additional energy acquired when
q

2 rgo
first cation at an ionic separation of \/-2— ro. Thus this additional energy

- %_—(—m . Therefore with the 0,0, 0 cation missing, the energy of the
2r, 2 2

1,1, 0 cation is effectively: - 4 q0 -3
r M J2 r

cation thus increases the Coulombic energy of the crystal by an

its potential well was deepened - as a consequence of extracting the

is

Extraction of this second

amount = qz/rO (Opg T l/ﬁ).

The Coulombic interaction energy of the saddle ion with a perfect lat-
tice is zero. However, in the saddle-point configuration when the two-n.n.
cations (at 0,0,0 and 1,1, 0) are removed, the Coulombic interaction between
the n.n. anions (1,0,0 and 0,1, 0) and the saddle cation (1/2, 1/2, 0) is
‘released. Since the separation in both cases is r = (V2/2) r,, this cation -
anion interaction is

(2) (+q)(‘q) = - 2 qZ

(J2/2) r (J2/2) r
and thus represents a decrease in Coulombic energy of the crystal.
The above three terms represent the monopole contributions to the lat-

tice energy relative to a perfect crystal in the unrelaxed saddle-point con-
figuration, They may be summed as follows:
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2

:q_ (2 G,M_*_l_ - ___2 (D25)
To J2 ‘/2_/2

1
3,.1.1.2 Polarization — (Uz)P

These energy contributions result from the electrostatic interactions
between the dipoles induced on the lattice ions (by the electric fields intro-
‘duced by the charged defects) and these same electric fields, Separate fields
radiate from the saddle ion charge (+q) and the "equivalent'" charge (-q) hypo-
thetically located at each of the two vacancies,

In this case, where the saddle ion configuration is considered to exist
in an unrelaxed lattice, the 1 0-nearest neighbor (n.n.) anions to the three
defects are considered electronically polarized but not displaced from normal
lattice sites (i.e., unrelaxed). All other ions (non-nearest neighbor cations
‘and anions) are considered to undergo both electronic and displacement
(physical) polarization, This displacement polarization of distant ions is not
considered as relaxable in order to reduce complexity. The above basis
should be kept in mind when referring to figure D2 in connection with this
section,

The calculation procedure is then as follows:

First — calculate the discrete, electronic polarization energy contribu-
tion of the 10-n.n. anions as induced by the three defects (s,

Vas Vb).

Second — calculate on a continuum basis total polarization of all non-
n.n. anions and all distant cations induced by the three defects,

3.1,1,2.1 Electronic Polarization of 10-Nearest Neighbor Anions
by the Three Defects

The discrete energy contribution by a n.n. anion in a rigiqd lattice
arises from the interaction between its induced dipole moment u and the elec-
tric field & giving rise to it as follows:

- -
=_-1/2E .u (D26)

(UP)n.n. o

-5
Both E, and _[:l are always in the same direction, Also the dipole induced on

3gn anion by E, may be expressed in terms of the anion polarizability a_:
M =0 Eg. On this basis equation (D26) may be transformed to the following:
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o -» 5 +2
Up), o, =-1R2E -aE =-1/20E (D27)
anion
where
2
E2=(2E2)?+(2E2)?+ (ZE_)-lz (D28)
o x| - vy z

5 Labeligg the fields from the saddle ion and the vacancies a and b as
Eg, ia, and Ep,, respectively, these fields acting to polarize anion #1 are
sketched as follows for the unrelaxed lattice:

Anion #1

N /& rs=(ﬁ2) S

Es
(E) v«\ 'éa \3/
Plefo—» 0
I (ex)sl
r =r +
b o Eb _5
Db
r =r l
a o]
q q
} - b
ZEy_— (EV)S+(EY)b~(r2)cosw - rz (D29)
S b
5 g 9y
EX = - (EX)S + (Ex)a = - F— cos 8 + r—z' (D30)
- s a

where
pos. y-components are taken upwards; neg. -downwards

pos. x-components are taken toward right; neg. ~toward left
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w=8=m/4
r =r,_=Tr
a b o (D31)
v = (V/2/2) r
9 93 9 7 4 (where Zcation Zanion)
Substituting from (D31) into (D29) and (D30) yields:
- 4 1 2.9 :
ZEy— — AN 2(\/7-1) (D32)
[(JZ/Z) r o To
TE_=- 4 le- N e (D33)
2 ’
[(ﬁ/Z) ro] t o
Thus
YE =<2 E
z E2 =2 E2 (D34)
X y

Although an approximation, ¥ E, is taken as zero. Substituting (D34) into
(D28) yields:

9 2
E“ =23 E (D35)
O X

Substituting (D35) into (D27) yields:

(UP)anion

#1

- _%—a_(ZZEj) (D36)

Substituting the value of ¥ E_ from equation (D33) into (D36), and noting from
figure D2 that anions #1 and )%‘10 because of symmetry have equivalent inter-
actions, yields:
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. q
(UP)anions =2 {-(1/2) a_(2) F‘ (V2 -1)
#1 and o
#10
2 2
=20, i4—(0-4:14:)2 = - 0,344 a_ q4 (D37)
r r
° (o]

It will be observed that anions #2, #3, #4, and #5 are symmetrically
located with respect to defects s, v,, and vi,. Consideration of anion #2 in
its unrelaxed position yields the following field vector diagram at #2:

Anion #2

Again we assume s to lie in the plane of the paper and thus consider no z-
component to the defect-induced field at anion #2. Using the expressions
(D27) and (D28) we have:

!
(UP)anion

--1/20 [ZE2+ZE2] (D38)
- X y’
#2
Using the same procedure as for anion #1, these x- and y-components of the
defect field vectors at the unrelaxed position #2 are found to be:

.9 . _ 49 0.5 1
LE = rf [(Ex)s - (Ex)b] = rj [(2.5)3/2 T 372 J
. (D39)
_ 4 , _ 9 t_1.5 _, __2
PEy s [(EY)S - (B), - (Ey)b]- 2 [(2.5)3/2 L7 2}
(o] (o]
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Substitution of (D39) values into (D38) and multiplying by 4 to account for the
four symmetrical anions yields:

' 2 2
1 1 2 0.5 1 1.5 2
- - q . _ . _ _
(UP)anions 4 7% 4 ( 2 5 3/2 53/2) + ( > 5 3/2 1 53/2)
42,3, 4, rs (2.5) (2.5)
and 5
qZ
=~-1,282 a - (D40)
- 2 ’

Of the 10-n.n. anions to three defects, six have been accounted for
(i.e., #1 through 5 and #10), The remaining four anions (#6 through #9) are
seen in figure D2, It will be observed that the defect-induced field is the
same at each of these four in the unrelaxed lattice., By the same procedure
as above, that of summing the squares of the appropriate defect field com-
ponents at a given ion position, one obtains:

2 2 2
! 1 q 0.5 1 1 1
(U.) . =4 ! -=0 = (- + )2+ (-1+ - )
P’anions 2 - rf 1.53/2 3372 1.53/2 33/2

#6,7,8,
and 9
qZ
= -0,8636 00 — (D41)
- r4
O

The energy contributions of the 10-n.n, anions, resulting from
polarization by the defect field, may now be obtained by a summation of equa-

tions (D37), (D40), and (D41) as follows:

' i 2 636]
(Up) oon.m. = %. 5 [- 0.344 - 1.282 - 0.8636
anions o

1 (D42)

1

1
3]
N
N}
o
o]

1
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3.1.1.2.2 Electronic and Displacement Polarization of All Non-Nearest
Neighbor Cations and Anions by the Three Defects

The scalar expression given in equation (D20) for the total dipole
moment (electronic and displacement) of a cation in the dielectric continuum
is as follows:

At 0314
}.J.+—M+ro(r2) (D20)

where polarization of the: continuurm results from the single charged defect,
+q. Where several charged defects (as in this case) act to polarize the
dielectric, calculation of their individual contributions to polarization is more
complicated. Fortuitously it has been found that, although not justified on
first principles, M4 (or M_) may be calculated by treating the factor (g/r2) in
equation (D20) as the combined electric field of the various charged defects

at a given cation in the continuum., This combined field is obtained by sum-
mation of individual field vectors,

The '"discrete' field vectors, which for purposes of calculation, are
considered as generated by the charged defects (qg, ~ q5, - qp) and result in
polarization of a cation in the dielectric, may be sketched as follows:

With reference to the defect s in the saddle configuration, this total dipole
moment on a distant cation may be expressed vectorially as follows:

" M p3(2s 4
(p'+)s_ + %o rZ Ts (D43)
S
where

r, = separation between a given distant cation and the saddle ion of

A charge qg. 5

r_ = unit vector in r_ direction = r /I r_|

S : s s s
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-
The vector field (E,)g induced by g4 at the distant cation may be expressed

as follows:

S

- A
(E ) =—2 F (D44)

Summing the field contributions by the three defects at the position of a given
distant cation yields:

2 g A a A p A
Z EO ———2 rs - —2— ra - _2 l‘b (D45)
T T r
s a b
- o3 [95 A 9 A 9 A
ZH+—M+1‘O —z'rs-—zl‘a-Trb (D46)
: T T T
s a b
From equation (D26) we have:
t 1 5 -+ 5 -
(UP)one T2 Eo P (D47)
distant
cation

Substituting the sums from (D45) and (D46) into (D47) yields:

2 2
! I L s A 49, A 4, A
<UP)one -z M oz i 1‘s'rs_z'rz rZ Ts ra+?fra Ta
distant S s "a a
cation
q.4 q,4d 2
LY S S A S S Y D48
"tz 2T Tttt T 2 T T AT T (D48)
s b a b b
Since by definition we have:
A A T ;a |z | |ra| cos esa
roer = 5_. =— 5 = cos Bsa (D49)
el Tl el Il
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Similarly:

A A
b r ¥ =cos gab (D50)

A A
r e+ r, =cosb
s

By symmetry (see above sketch of field vectors) we have:

4 4 2 2 2 2
Zl/ra-Zl/rb, Zl/(rs ra)—Zl/(rs rb),
(D51)
cos esa = cos st
Further note that:
A A 1 A A . A A )
P P P S S
(D52)

dg =9y =9, = lql (the appropriate signs were

assigned in (D45) and (D46))

Substitution of appropriate values from expressions (D49) through (D52) into
(D48) yields for all distant cations:

. 13 qZ 4 q2 cos 8__ 2 qZ cos eab 2 g%
(UL) =M r n—_— -2 + Z + =
P’all 2 7+ "o 4 2 2 2 2 4
distant rs rs ra ra rb Ta
cations
(D53)

The scalar separation values may be expressed in units of r_ and the pure
members, 14, 15, tp, as follows:

r =4 r; r =4 r; r, =4 r (D54)

Substituting these values from (D54) into (D53) and removing a common factor
2 qz/rg1 from within the square brackets yields:

. | qZ 1 cos esa cos eab 1
(Uplgistant = -~ My 7= [1/2 8- 28—+ 2 ———S—+ I
. o 4 L- 4 AR & L
cations s s a a b a

(D55)
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Evaluation of the lattice sums shown in brackets in (D55) has been carried
out by Guccione, etal., to yield a value of 2.441. Thus equation (D55) may

be expressed as follows:

2
1 1
(UP)all = - l:2.441 M+ ] (D56)
distant ©
cations

1 .
In a similar manner, Up (non-n.n.anions) can be evaluated. Guccione,
etal., report this value as follows:

2 |
(U )all = -7 [1 . 155 M_] (D57)
non-n,n, ©
anions

3.1.1.2.3 Sum of Polarization Terms

The combined polarization energy contributions from the undisplaced
10-n.n. anions (equation D42) and from the remaining, unrelaxably-displaced
anions and cations in the continuum (equations (D56) and (D57)) may be sum-

med as follows:

2 .2
(U)p = - 2.490 a_i4 3 [2 441 M $1.755 M ] (D58)
T (@]
0]

3.1.2 Non-Coulombic Energy Contributions

Overlap repulsion is determined on the basis of the Born- Mayer (B-M)
expression (see section 2.1,2}):

U(r) =b C, _ exp [(r++r_)/p] exp (- r/p) (D59)

The constants b and p are evaluated from

for those cases where r2r .,
The Pauling ionic depend-

compressibility data for a given crystal lattice.
ence factor C is as follows:

Z . Z .
C=1+—2+-2L (D60)
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2., 2, = nuclear charge on interaction ions

n, =+ 38

Taking MgO as an example:

2+ 2+ . . . _ (+2) | (+2) _
Mg - Mg repulsive interaction = c++ =1+ 8 + 8y~ 1.5
2+ 2 - . . . _ _ (+2) -2) _
Mg~ -0 repulsive interaction = C+_ =1+ (+8) + (78) 1.0 (D61)
Oz_ - OZ_ repulsive interaction = cC =1+ 1(_;—2;-+ {;—g; = 0.50 )

For those cases where overlap repulsion is to be evaluated between ions
separated by a distance r < r,, the Born-Mayer expression is too ""soft.' In
these cases only, the harder Born-Mayeér-Verwey (B-M-V) expression for
overlap repulsive interaction energy has been used, having been found to be
more correct, The B-M-V expression is as follows:

12

A+ Br (D62)

Upmv it =

Rather than direct evaluation of B-M-V constants A and B from compres-
sibility data, a short-cut was taken which effectively makes use of such data
in the form of the B-M constants. It is assumed that at equilibrium in the
perfect lattice (i.e., r = ry), the B-M and B-M-V energy and force (energy
derivative) expressions are equivalent as follows:

A+Brl%-p C,_exp [(r+ + r_)/p:' exp (- r/p) (D63)

-12 B r13

(b/p) C, _exp [(x, + 2 )/p] exp (- x/p) (D64)

Using equation (D64) and given values of b, p, Cy_, ry, and r_, a value of B
may be obtained for the special case of r = r,. With this value of B and the
same constants, a value of A may be obtained at r = ry from equation (D63).
Note that, in the repulsive interactions considered important to the unrelaxed
saddle-point configuration (see below), only the interaction between the saddle
ion and its 2-n.n, anions {(at a separation of /2/2 r,) required use of the

B -M-V expression.
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Regardless of which overlap repulsion energy expression is used, it is
applied to the presumably undistorted lattice in the vicinity of the saddle-point
cation. As shown in Guccione, etal., (see their equation (2)), included are
repulsive interactions involving the saddle ion as follows: ‘

(1) Cation and Anion
(a) Saddle cation and 2-n.n. anions (note: the dominant term)
(b) Saddle cation and 4-anions n.n. to v, and v}, (above and below)
(c) Saddle cation and 4-anions n.n, to v, and v} (at sides)
(d) Saddle cation and 8-anions next n.n. to anions #1 and #10
(2) Cation and Cation

(a) Saddle cation and 4-cations n.n. to anions #1 and #10 (above
and below)

(b) Saddle cation and 4-cations n.n, to anions #1 and #10 (at sides)
(c) Saddle cation and 8-cations n.n. to anions #2, 3, 4, and 5

The extraction of two cations from normal sites effectively releases 12
cation-anion overlap interactions (i.e., between each of the cations and their
six n.n, anions at a separation r, in the unrelaxed lattice, In addition, 23
cation-cation overlap interactions are released i.e., 22 between each of the
two cations and their next n.n. at a separation /2 r, and one between the two
original cations at a separation of V2 r,. These terms must be subtracted
from the seven energy increasing terms outlined above,

The above described repulsive interactions may be summed as a group
of explicit terms (each expressed by the appropriate overlap repulsion energy
expressions as in (D59) or (D62)). This summation, with the terms written
to correspond to the order presented above, is as follows:

B J2 J6 J10 J14
UR = ZUBMV (2— ro> + 4U (Tro + 4U 5 T, + 8U R
pav (Lor Vi au(L9: Y+ (L2
2 "o 2 o 2 o)
- 12U (r ) - 23U (J2 r) (D65)
where
UB M V(r) = Born-Mayer-Verwey expression (see equation (D62))

U(r) = Born-Mayer expression (see equation (D59))
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3.1.3 Summation of Contributions to the Energy of the Unrelaxed
Saddle-Point Configuration

This summation is accomplished by combining Coulombic (equations

(D25) and (D58)) with Non-Coulombic (equation (D65)) energy terms.
1
3.2 Energy Decrease Upon Relaxation (U, - U,)

An energy decrease occurs upon relaxation of the lattice around the
saddle-point configuration. It is assumed that the lattice distorts itself in a
way such that the equilibrium established by relaxation is attained by a maxi-
mum energy decrease., Evaluation of this decrease (AU = Up - Uy) is accom-
plished by a summation of relaxation-induced changes in interaction energies
in the lattice, Such changes in interaction energies are considered in the
order outlined below:

3.2.1 Coulomb
3.2.1.1 Monopole

(1) Coulomb energy between nearest neighbors

(2) Coulomb energy between saddle-point ion and the nearest neighbors

(3) Nearest neighbor interaction with the external lattice

3.2.1.2 Polarization

(1) Of nearest neighbors due to the effective charge on the 2 vacancies
and the charge on the saddle-point ion

(2) Of nearest neighbors due to\displacement of nearest neighbors

(3) Neglect dipole-dipole interactions

3.2.2 Non-Coulomb

(1) Overlap interactions between saddle ion and the 10 nearest neigh-
bor anions to the 3 defects

(2) Overlap interactions between nearest neighbors, and between near-
est neighbors and their nearest and next nearest neighbors

Note: Born-Mayer-Verwey potential used in 3.2.2 (1) and 3.2.2 (2)

for all interactions where separation < Ioe
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These interaction energies are expressed in terms of nearest neighbor
relaxation displacements Nr, and £r, shown in figure D2, A trial and error
method (making use of a computer) is then used to obtain those corresponding
values of nr, and €r, which maximize the relaxation-induced energy
decrease. Formulation of energy terms is by procedures similar to those
given earlier in sections 3,1.,1 and 3.1.2,

3.2.1 Change in Coulombic Energy Contributions - AU

3.2.1.1 Monopole Interactions (AUC':)

These interactions may be summarized as follows:

1 1 1
AUC = AU between + AUbetween saddle + AUbei:ween anions

10-n.n. cation and 10- 1 and 10 and
anions n.n, anions lattice
1 1
* AUa‘nionS 2: 3, 4, + AUanions 6, T, 8, (D66)
and 5 and and 9 and
lattice lattice

3.2.1.1.1 AU’ (Between 10-n, n. Anions to the Three Defects)

Inspectlon of figure D2 indicates that the separatlon r between dis-
placed n.n. anions #1 and #10 = /_r +2J2 g ry = Ty J2 (1 +2E), The
Coulomb interaction energy between these like charges (-q) is thus:

(-a) (-a) [z, VZ (1 42 8)) = (qz/ro)(l/[ﬁ (1 +29) )

Taking into account symmetry around the saddle-point configuration, one
obtains interactions between other various pairs of the 10-n.n. anions occur-
ring at the following indicated ionic separations:

No. of Interactions Ionic Separation r (Units of rﬂ)
10 (e.g., 4-5, 4-6, 2-3 etc.) J2 (1 +1)
1/2
2 (e.g., 6-9 etc.) [2 + (2 + ZT])ZJ
2 (e.g., 6-7 etc,) 2+2n=2 (1 +mn)
1/2
2
4 (e.g., 1-2 etc.) [(1+T] -8y + (1 +§)2]

104



No. of Interactions Ionic Separation r (Units of r)

4 (e.g., 1-3, 10-2, etc.) [(2 ine ey 52]1/2

8 (e.g., 1-6, 10-8, etc.) [(1 I +n)2]1/2
2 (e.g., 2-4 etc.) [(3+2ﬂ)2+1]1/2

2 (e.g., 2-5 etc.) JZ @ +m)

8 (e.g., 2-6, 4-8, etc.) [(2 +'ﬂ)2+1+(1+ n)2]1/2

Discrete, Coulombic energy terms may be formulated for these additional 42
anion-anion monopole interactions from the potential energy expression q4/r,
as was done for the #1 - #10 interaction above. Subtraction from such terms
of their counterparts appropriate to the unrelaxed saddle-point configuration
(i.e., whenn = 0, € = 0) yields the relaxation energy change with correct
sign, This change, AU’ (10-n.n. anions), in which 43 interactions have been
included is shown as follows:

2
! q 1 10 2 2
AU = + + ¥
10-n.n. I‘O /—2— (1 + 2%) ﬁ (1 n T]) [Z ' i Zn)z]l/z 2 (]. + n)
+ 4 + 4
1/2 1/2
[Wen-2%+a+e?] [@+n+e)?+e?]
8 2
+ +
1/2 1/2
[0 +ef 4%+ +n?] [(3+2n)2+1]
2 8
+ +
— 1/2
J2 (2 +4m) [(2+n)2+1 1 em?]
- appropriate terms wheren = 0 and € = 0 ‘ (D67)

Although some regrouping of terms in equation (D67) is desirable prior to
use, the manner of expression is such as to enable easy identification,
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3.2.1.1.2 AU (Between Saddle Cation and 10-n.n. Anions)

In a manner similar to 3.2.1.1.1 above, one may express the 10,
cation-anion interactions between the saddle cation (s) and the 10-n,n, anions
to the saddle-point configuration as follows:

ua
1
(e}

- terms forn =

(D68)

3.2,1.1.3 AU’ (Between n.n. Anions #1 and #10 and External Lattice)

Evaluation of interactions of the n.n. anions with the external lattice
may be accomplished by first obtaining the Evjen potential Vg at the appro-
priate displaced position. Thus for anions #1 and #10 one determines
- Vg (8r,, &r,, 0). For anions #2 through #9, inspection of figure D2 reveals
that - Vi (nr,, 0,0) is the potential appropriate to the postulated displacement.
Note that in either case the potentials exist at a point displaced from a normal
lattice site in a perfect lattice. The negative sign is explicit and denotes
dominance of the potential in this case by the adjacent anion (e.g., #1), which
under the conditions for evaluating this potential remains at its normal site.

Utilization of - Vg (§r,, €ry, 0) or - Vg (Nr,,0,0) in connection with
the relaxed saddle-point configuration, involving 10 displaced anions, 2 cation
vacancies, and 1 saddle ion, requires that they be corrected to reflect changes
introduced by these defects and relaxation displacements. The saddle ion
makes no contribution to either potential and so introduces no correction,

Confining attention to - lVE (Ery, Brg, 0)|, call ~ Vg (€) for shorthand,
ohe may proceed to describe these required corrections. For the moment
call p051t10n 1 the unrelaxed position of anion #1 and position 1 (shown as
- Ery, Ery, 0) as the relaxed position. The value of - Vg, (8) reflects a
strong negative contribution by anion #1 at 1', Moving anlon #1 from 1' to 1
(the point at which the potential is to be evaluated) eliminates this contribu-
tion, Such elimination greatly reduces the negative value. In fact, because
of previous dominance of the potential by ion #1, its removal allows the
potential to become positive. This may be inferred by inspecting figure D2
and observing that cationic interactions are now dominant. This relocation
(upon relaxation) of anion #1 leads to the correction:
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(-q) 9
-V (§) - = (i) +
E) ] 2 r

The correction, involving the term q/(V2 E r,), thus amounts to discounting
this original contribution of anion #1 to - Vy (&) by adding it back with sign
changed., For purposes of calculation this pfocedure may be simulated by
placing a charge of opposite sign (same magnitude) at sites where ions normally
contribute to - Vi (€). Contributions to the potential by these '"equivalent
charges'' are then added to - VR(E) as correction terms.

A further example is the correction for anion #10 missing from its nor-
mal position, termed position #10 . An 'equivalent charge +q'' placed at 10'

and separated from 1 by a distance = r, ['\/—§+ '\/Z] thus represents
a correction to VEl(i) of +q/[f2— (1 +8) ro] .

Upon removing a cation, e.g., cation a, the charges of six surrounding
anions are partially released and one would infer that - Vg, (§) would become
even more negative. The correction to VE (%) is obtained " by placing an 1/2

"equivalent charge -q' at vacancy a. Ata separatlon r=r_ I:(1+§)2 + 52] )
the correction to VE1 () is thus:

oot

By a procedure similar to that used for the above corrections to -VEl(:',),
termed for purposes of brevity 1-1 'J1-10', and l-vac.y, one may formulate

corrections 1-2', 1—3‘, and 1-6|. Based on the symmetry of a FCC lattice,
these correction terms to be added to - VE1 (§) may be grouped as follows:

Source Correction Term

! q

%/?a

1 -1

1 -10 9
rOJZ (1 +2)

- g

f1 - vac, a]

ll-vac.bs G/

r [0+ 8+ et ]
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Source Correction Term

f1-2"] q
1 §

r [(1 -5+ 5)2]1/2

ll -3'¥ q
1 - 4! 1/2
v [(2 e+ E,Z]

(1 -6',1-7" q
1

: 172
v [1 +‘§)2+E,2+1}

1
@
—

1
O

The above tabulation thus accounts for the effect on - VE; (§) of all 10-n,n,

anions missing from normal sites and the two cation vacancies. Applying
these corrections leads to the following expression for the potential at posi-
tion 1:

V. (B)=-|V_. (E)+ 4 + d 29 + 24
A B 1/2 1/2
L J2sr, J2(48)r [(1+a,)2+52] r E1_5)2+(1+a)2] r
2q 4q
+ + (D69)
[ 2 2]1/2 2 2 ]1/2
(2+E)” + & r [(1+E) + €7 +1 r

The energy of interaction of anion #1 with the external lattice is given by
the product of its charge (-q) and the potential at position 1, The latter, of
course, is given by equation (D69). Note also that, because of symmetry, the
corrected potential at position 10 is identical with that at position 1. The
energy of interaction AU' (between n.n. anions #1 and #10 and the external
lattice) is thus given as follows:
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AU =
anions 1 and 10
and lattice

T
o+ 1 + 1

la|] V2 & /2 (1+8)

- .22

VE] (E,ro, ﬁro, 0)

2 L 2
[(1+5,>2 + 5,2]1/2 [

1/2
0-% 42

2 4
[(z+a,)2 " 5,2]1/2 ' [(1+§)2 re? 4 Jl/z

- [terms where € = O] (D-70)

3.2.1.1.4 AU' (Between n.n, Anions #2, 3, 4, and 5 and External Lattice)

Reference to figure D2 reveals that anions #2, #3, #4, and #5 undergo
identical interaction with the lattice. Proceeding as in 3,2.1.1.3, corrections
to the Evjen potential at any one of these four displaced positions (e.g., posi-
tion 2) are formulated to yield the potential existing after relaxation about a
saddle-point configuration. Multiplication of this potential, for example
V2N rys 0,0), by the charge (-q) on anion #2 and finally by the factor four (to
account for the four symmetrical anions mentioned above) yields the follow-
ing expression for the interaction energy between these ions and the external
lattice:
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2

! _ q o 1 4 1
anions 2,3, 4, “_4;_ - VEZm 1‘0’0’0) _+ﬁ+ ’ 1/2 "1 +n
and 5 and 4 l:l + (14m) ]

lattice

] 1
* 5 1722
[(3+n) + 1]
- [ terms wheren = O] (D71)

3.2.1.1.5 INSH (Between n.n. Anions #6,7,8, and 9 and External Lattice

Again using procedures shown in 3.2.1,1.3 and noting the symmetry of
anions 6, 7, 8, and 9 with respect to the defect structure, one may formulate
an interaction energy expression between these four anions and the external
lattice as follows:

' = 4q2 v 0,0 _rE 1 1 _ !
anions 6,7,8,” = " _ )~ Eémro’ +0) gl N 1M 5 1/2
and 9 and © 4 [(1+n) +2:|
lattice
4 2 1
' A AT
[(1+n) +1] [(1+n) +5}
1
+ . 172+ 172 - [terms wheren:OJ
[emP+z] @b

(D72)
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1
3.2,1.,1.6 Evaluation of AUC

The monopole interaction terms, evaluated separately in equations
(D67), (D68), (D70), (D71), and (D72), may be summed according to equation
(D66) to yield the decrease in monopole interaction energy resulting from n.n,
relaxation about the saddle-point configuration.

3.2.1.2  Polarization (AUp)

It will be recalled that, to minimize complexity, polarization of the
external latfice is not considered relaxable. Thus only the decrease in
polarization energy of the 10-n.n, anions is considered. Referring back to
section 3,1.1.2.1 (polarization of the n.n. anions in the unrelaxed configura-
tion), please note equations (D31). For the relaxed condition of anion #1 one
may revise these as follows:

w=0=1/4
1/2

_ _ =2 .2

ra-rb—ro [(1+§) + £ :I
(D73)

rS:roﬁ[l/Z‘F‘%J
q =9 =9, =q (where z . =z . )

s a b cation anion

Equation (D30) may be revised to yield the sum of the x~-components of the
electric fields induced at position | by the three defects as follows:
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This value of 2 E, may be substituted in equation (D36) to yield the
explicit polarization interaction energy term Up for anion #l in its displaced
position &r,, &ry, 0., Since anion #1 and #10 are equivalent in their inter—'
actions with the defect fields we may write the following expression for AU

(252

1
(AUP)n.n.anions -
#1 and #10

I
[\S]
1
] -
Q

g & Jz 1428
R VIR 2 213/%
o (042 + 22]
2
- [terms where § = 0] (D75)

Note that the sign change of the first two terms within curly brackets in (D75)
is permitted by virtue of the bracket being raised to the power two.

Similar pi‘ocedures may be used to derive expressions for the group of
equivalent anions #2, 3, 4, and 5 and for the remaining group consisting of
anions #6, 7, 8, and 9, The following expressions result;

2
2
l ~ q 1/2 1
(BUply 1, anions = " 2 &~ 37z " . 112
#2,3,4and o [(3/2+n)2 + 1/4] [(2+n) + 1]
5
2
N 3/2 + 1 2+
3/2 2" ¢ 32
[(3/2+n)2 + 1/4] (1) ‘{_(Zm)2 + 1]
- [terms where n = O] : (D76)
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' _ q 1/2 1
(BUp); n.anions = = 2 % _1__4 - 213/2 7 ¢ ,73/2
#6,7,8, o [1 /2 + (14m) ] [2 + {1+m) ]
and 9
2
1 1 +n 1 +m
+ Z - 572 T 372
(141) [1 /2 + (1+n)2] [z 4 (1+n)2]
- [terms where n = 0] (D77)

Summation of equatilons (D75), (D76), and (D77) yields the net change
in polarization energy AUp resulting from relaxation of all 10-n.n, anions
about the saddle-point defect configuration.

3.2.1.3 Summation to Yield AUC

The change in Coulombic energy resulting from relaxation about the
saddle-point configuration is obtained by adding the monopole interactions
(section 3.2.1.1) with the dipole-defect interactions (section 3.2.1.2) as
follows:

AU . = £ U' (monopole) + & UP’, (D78)

C

Note: Dipole-dipole interactions were neglected,

3,2.2 Decrease in Non-Coulombic Energy (AUR)

Similar procedures are used here to evaluate the decrease in overlap
repulsive interaction energy as were discussed in section 3.1.,2, The B-M
expression (designated U(r); see equation (D59)) is used where r 2 r  and
the B-M-V expression (designated Upp y(r); see Equation (D62)) where r< r

3.2.2.1 Overlap Interactions Between Saddle Ion and 10-n.n.'s
(Cation-Anion)

The terms dominating AUR are those two (identical) expressions
describing the overlap repulsion between the saddle ion(s) and anion #1 and
anion #10, respectively. At a relaxed separation r = (/2/2 + /2 E) Ty,
repulsion interaction s-1 may be expressed as follows:
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(s-1) = UBMY, _

U [(Jz_/z+ /Z¢) ro] (D79)

R
Since interactions s-1 and 8-10 are the same we have:

Ug(s-1, 5-10) =2 U JZ/2 + VZ §) ro] (D80)

BMV+_[(

Similarly overlap interactions s-2, s-3, s-4, and s-5 may be expressed
by:

1/2
UR(s—Z through s-5) = 4 U, _ {[(3/2+n)2 + 1/4] r } (D81)
and interactions s-6 through s-9 by the following expression:

) 1/2
Ug(s-6 through s-9) = 4 U, _ {[(IH‘]) + 1/2] rO} (D82)

Summation of the above overlap interactions of the saddle ion with each of the
10-n.n,s and comparison of this sum with that obtained from the appropriate
terms when n = 0, § = 0 yields:

1/2
AU (s andlo_n.n.):ZUBMVJr_ [(JE‘/2+/Z§) ro] +4U, [(3/2+n)2+1/4] r
/2
+ 4 U+_ [(lm)2 +1 /Z:Il r
- [terms where € =0, n =0 ] (D83)

3.2.2,2 Overlap Interactions Involving n.n. Anions #1 and #10

Inspection of figure D2 reveals four cations in a nearest neighbor posi-
tion with respect to anion #1 (two in the plane of the paper, one above and one
below), the saddle ion being excluded, A similar relationship prevails at
anion #10, The two cations in the plane of the paper are separated from
anion #1 by a distance r = [e2 + (1 _5)2]1 /2 r,. The two cations out of the
plane of the paper are separated by a distance r = [2 EZ + 1]1 /2 r,. Anion-
cation, overlap repulsion for these important interactions (i.e., where

rs ry) may thus be expressed by the following:
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1/2

BMV_, [52”1‘5)2] Yo

UR(#l- ,#10-four cation n.n.,) =4 U

]1/2 Yo } (D84)

+4U-+ [22 + 1

Similarly, a single anion will be noted in the plane of the paper
located at a next nearest neighbor position with respect to anion #1. Their
separation r = /2 (1 - &) r,. A like geometry prevails for anion #10. Thus
we may write the following overlap repulsion term:

UR(#l-,#lo-one anion next n.n,) = 2 U [J?(l - 5)1‘0]

(D85)

Overlap interactions between anions #1 and #10 and the other eighf,
numbered n.n.'s to the three defects may be expressed as follows:

Anion-Anion Interactants Overlap Repulsion Energy
) 172
1-2, 1-5, 10-3, 10-4 40 [(1+€) + (14n-§) ] r
(D86)
{1-6, 1-7, 1-8, 1-9 I 2 2 2t /2
110-6, 10-7, 10-8, 10-9 | BU__ 5 + (F8) +(14m) o
(D87)

Additionally, ananion-anion interactionterm may be written to describe
the overlap repulsion between anions #1 and #10 and each of their four, next
nearest neighbor anions (out of the plane of the paper). An anion-cation inter-
action term may also be written for anions #! and #10 interacting with each of
their two, third-nearest-neighbor cations. A total of 12 additional interaction
terms involving anions #1 and #10 is thus generated.

Overlap interactions involving anions #1 and #10 thus total 34 and con-

sist of 22 anion-anion and 12 anion-cation interactions. The decrease in
energy, upon relaxation, related to these may be expressed as follows:
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MU (n.n.#1-,10-) = (eq. (D84)) + (eq. (D85)) + (eq. (D86)) + (eq.(D87))

+8U {[(1-5)2 +az+1]l/2 ro}
+aU_, %[1+2(1-:)2]1/2 ro}

- [terms where £ = 0, nn = 0] (D88)

3.2.2.3 Overlap Interactions Involving n.n, Anions #2 Through #9

Referring to figure D2, an important term is the one describing inter-
action between each of the eight unaccounted for "n.n." anions (#2 through
#9) and one adjoining cation at r = (1-n) r ;. Four other cations adjoin each
of these eight, numbered anions at a separation r = (14n2)l /2 r,. These 40,
anion-cation overlap interactions may be expressed as follows:

1/2
U ,[(1-71) ro] +3RU [(an) ro:I (D89)

R(n.n.2—9)_+ = 8 UBMV_

+

Again referring to figure D2, one observes ten interactions (2-3, 2-8,
2-9, 3-8, 3-9, 4-5, 4-6, 4-7, 5-6, and 5-7) between these eight numbered
anions at the separation of next nearest neighbors., Since such separation
r > r,, these interactions are obtained from the B-M expression as follows:

AUL(@m.n.2-9) _=100U__ [/?(Hn) ro] (D90)

In addition to the above 50 interactions, 60 more anion-anion terms are
pertinent, These involve interactions of anions #2 through #9 with their next
nearest neighbor anions, Summing then, one obtains the following:
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AU_(n.n,2-9)=8T

1/2
X [(1-n)ro]+ 20, [(an) ro] +10U [/2_(1+n)r0]

BMV _,

1/2 1/2
+32U0 {[1 + (1-n)2] ro} +280__ {(2+n2) ro]

- [terms wheren = 0] (D91)

3.2.2.,4 Ivaluation of AUR

The total decrease in overlap repulsion upon relaxation is obtained by
simply adding the interaction expressions (D83), (D88), and (D91). Note
that 154 overlap repulsion interaction terms have been included.

3.2.3 Net Energy Decrease Upon Relaxation

The evaluation of the energy decrease upon relaxation (UIZ - Up) detailed
above is based on the model (figure D2) that the 10 anions nearest neighbors
(numbered) to the three-defect saddle-point configuration undergo relaxation
displacement €r, and Nr, as shown. An expression for this energy decrease
in terms of § and M may be formulated by adding the Coulombic (equation
(D78)) and non-Coulombic (equations (D83), (D88), and (D91)) contributions. A
trial and error process may be used to maximum the decrease, Uy - Ujp.
Thus one selects a value of M (the least sensitive of the two unknowns) and
scans the summation equation by varying €, Successive selection soon yields
a pair of values for m and & which correspond to a maximum decrease in
energy. Such displacement, of course, represents a minimum energy for
the distorted saddle-point configuration, the condition for stability.

3.3 Energy of the Relaxed Configuration (U;)

1
Subtraction of the equilibrium decrease in energy Up - Uy (section

3.2.3) upon relaxation from the energy of the unrelaxed cationic saddle-point
configuration U'z yields the value for the energy of the relaxed configuration
Uz. The value of Uy in the illustrated calculations above, of course, cor-
responds to a cation in the saddle-point position. In this simplified case this
saddle ion is assumed to lie in the same plane as two nearest neighbor cation
vacancies, each a distance of r, J2/2 away from the saddle-ion.
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4,0 Energy Barrier for Cation Vacancy Migration (AU,) in an
Otherwise Perfect Lattice

It has been demonstrated that the saddle-point energy represents the
largest barrier to ion migration, Evaluation of this barrier proceeds now
based on the foregoing discussion, For example, take the case of a cation at
a normal lattice site 0,0, 0 and a cation vacancy at 1,1, 0, both in an other-
wise perfect lattice. The energy of this configuration is Uj. In attempting
to jump to 1,1, 0, the cation at 0,0, 0 must overcome the energy barrier at
the saddle position, approximated by 1/2, 1/2, 0. The energy of this con-
figuration is Up. The net energy barrier for cation migration is thus
Uy - Uy = AU,. Upon satisfying this requirement, the cation may jump over
this barrier to fill the vacancy at 1,1,0, Correspondingly, the vacancy
appears to migrate from 1,1,0 to 0,0,0,
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APPENDIX E
APPROXIMATE SCATTERING RANGE OF SOLAR UV PHOTONS

Attempts to use single particle optical scattering theory, e.g., Mie
theory for spherical partigc-res, to predict energy attenuation by scattering in
concentrated particulate systems involving multiple scattering have had only
limited success. Particle proximity, size distribution effects, and diffi-
culty in defining optical path lengths to be associated with theoretically
estimated extinction coefficients constitute three major problems. In an
effort to obtain a reasonable estimate of the projected (''straight through'')
range of a near-UV photon in a compressed pigment powder or a pigmented
coating prior to degradation, experimental data has been used.

It is assumed that in pigments of interest the intrinsic photon absorp-
tion edge occurs at an energy greater than 6.2 eV. Photon energies of the
solar emissions spectrum will be considered as largely <6.2 eV. The UV
""scattering range' will be considered on the basis of the 4.1 eV photon
(wavelength in vacuum, Ayac = 0.3u) as the least energetic photon likely to
mgmﬁcantly influence exciton generation rates.

The fractional decrease in spectral radiation inténsity, from an inci-
dent I5()) value to I4(A), after a beam has traversed an actual optical path x
is explicitly expressed as follows: '

LM/I,(\) = exp [-x (0, + 0) N] (E1)
where
o, = aBsorption cross-section, cm2
. . 2
oy = scattering cross-section, cm
"N = number of scattering and absorbing centers/‘cm3

discrete extinction coefficient in reciprocal units
of actual path, cm-1

S=N(ca+os)

While not required in single particle scattering, for the case of interest,
namely multiple scattering of "'spherical" particles in close proximity,
careful distinction between the actual optical path x and the pro_]ected path ¢
(i.e., measured normal to the surface) must be made. For a given, uniform
particulate dispersion equatlon (E1) may be approximated by use of a super-
ficial extinction coefficient S' as follows:

(1&/10))L ~exp [-S'1] (E2)

121



The diffuse spectral transmission of a 5.5 mil (0.0139 cm) thick
coating prepared by IITRI was measured by Blairl (see figure E1). This
coating contained ~30 percent volume ZnO pigment particles (average 0. 34
diameter, type SP-500) treated with K2SiO3 and dispersed in a catalyzed,
polydimethylsiloxane binder (index of refraction = 1.4). These data demon-
strate wavelength-dependent radiant energy attenuation typical of what
van de Hulst2 called the anomolous diffraction domain. By using only those
data well away from the absorption edge, S' values were obtained from
equation (2) and extrapolated to A = 0.21U (Aygc = 0.3M). For example at
Avac = 0.5u:

A (in silicone medium) = 0.5u/1.4 = 0. 358y

Taking the 4n of equation (E2) yields:
in (Io/I))\ =S4 (E3)

Neglecting all interface reflectance and taking I, = 1. 00 yields:

2

4n (1.00/0.04 = (1.39 x 10™ cm) S'

S' = 3.22/(1.39 x 1072) = 230 cm~!

At Ayae = 0.3 (A, oq = 0-2144), an extrapolated S' value of 400 cm™1 is
obtained (figure EZ2). Equation (E3) indicates that at this superficial extinc-
tion, 90 percent attenuation of this wavelength would occur in a coating thick-
ness of 58 U for a coating having similar (a) geometry, (b) particle and
medium indexes of refraction and (c) absorption characteristics.

Transmission of visible radiation through compressed and fired
polycrystalline Al,O3 of varying pore size and porosity is presented by
Lee and Kingery3 These data indicate correlation of scattering coefficients
of pores in a medium of alumina as a function of wavelength, pore size, and
porosity. Thus in a compact containing a fairly uniform pore radius of 2
and 3 percent porosity, a "'scattering coefficient' of ~185 cm-1l is measured
at an extrapolated wavelength of A,,. = 0.3 (>‘A1203 = 0.165d). Transmis-

sion measurements indicate that this ~185 cm~1 value can be considered
equivalent to the superficial extinction coefficient S' considered earlier.

On this basis, equation (E3) indicates that 90 percent attenuation of incident,
0. 3u radiation should occur in a thickness of 125U of 3 percent porosity
Al,O3 containing 24 radius pores. Similar attenuation at A,. = 0.3M ina
0.25 percent porosity Alp03 containing 0. 7y radius pores is indicated to
occur within a thickness of 230.

Based on the above data, it is concluded that prior to degradation
(either UV - or proton-induced) the projected range for UV photons of
interest is an order of 100U in either pigment-scattering (conventional
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mission of potassium
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thick).
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pigment content) or void-scattering (pigmentation exceeds CPVC) systems.
While admittedly an estimate, this UV range appears sufficiently accurate
for present purposes.
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